Soluble form of Lingo2, an autism spectrum disorder-associated molecule, functions as an excitatory synapse organizer in neurons.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
23 Oct 2024
Historique:
received: 28 09 2024
accepted: 15 10 2024
revised: 13 10 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 23 10 2024
Statut: epublish

Résumé

Autism Spectrum Disorder (ASD) is a developmental disorder characterized by impaired social communication and repetitive behaviors. In recent years, a pharmacological mouse model of ASD involving maternal administration of valproic acid (VPA) has become widely used. Newborn pups in this model show an abnormal balance between excitatory and inhibitory (E/I) signaling in neurons and exhibit ASD-like behavior. However, the molecular basis of this model and its implications for the pathogenesis of ASD in humans remain unknown. Using quantitative secretome analysis, we found that the level of leucine-rich repeat and immunoglobulin domain-containing protein 2 (Lingo2) was upregulated in the conditioned medium of VPA model neurons. This upregulation was associated with excitatory synaptic organizer activity. The secreted form of the extracellular domain of Lingo2 (sLingo2) is produced by the transmembrane metalloprotease ADAM10 through proteolytic processing. sLingo2 was found to induce the formation of excitatory synapses in both mouse and human neurons, and treatment with sLingo2 resulted in an increased frequency of miniature excitatory postsynaptic currents in human neurons. These findings suggest that sLingo2 is an excitatory synapse organizer involved in ASD, and further understanding of the mechanisms by which sLingo2 induces excitatory synaptogenesis is expected to advance our understanding of the pathogenesis of ASD.

Identifiants

pubmed: 39443477
doi: 10.1038/s41398-024-03167-5
pii: 10.1038/s41398-024-03167-5
doi:

Substances chimiques

Nerve Tissue Proteins 0
Membrane Proteins 0
Valproic Acid 614OI1Z5WI
ADAM10 Protein EC 3.4.24.81

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

448

Subventions

Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 15H02492
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 19H01015
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 23H00394
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 20K21471
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 19J14908
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 22K21353
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 390857198
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJER1801
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : 22g1510002h0002

Informations de copyright

© 2024. The Author(s).

Références

Mattila ML, Kielinen M, Linna SL, Jussila K, Ebeling H, Bloigu R, et al. Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry. 2011;50:583–5.e11.
pubmed: 21621142 doi: 10.1016/j.jaac.2011.04.001
Saemundsen E, Magnússon P, Georgsdóttir I, Egilsson E, Rafnsson V. Prevalence of autism spectrum disorders in an Icelandic birth cohort. BMJ Open. 2013;3:e002748.
pubmed: 23788511 pmcid: 3693420 doi: 10.1136/bmjopen-2013-002748
Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry. 2011;168:904–12.
pubmed: 21558103 doi: 10.1176/appi.ajp.2011.10101532
Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE, et al. Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry. 2009;194:500–9.
pubmed: 19478287 doi: 10.1192/bjp.bp.108.059345
Idring S, Rai D, Dal H, Dalman C, Sturm H, Zander E, et al. Autism spectrum disorders in the Stockholm Youth Cohort: design, prevalence, and validity. PLoS One. 2012;7:e41280.
pubmed: 22911770 pmcid: 3401114 doi: 10.1371/journal.pone.0041280
Russell G, Rodgers LR, Ukoumunne OC, Ford T. Prevalence of parent-reported ASD and ADHD in the UK: findings from the Millennium Cohort Study. J Autism Dev Disord. 2014;44:31–40.
pubmed: 23719853 doi: 10.1007/s10803-013-1849-0
Sun X, Allison C, Wei L, Matthews FE, Auyeung B, Wu YY, et al. Autism prevalence in China is comparable to Western prevalence. Mol Autism. 2019;10:7.
pubmed: 30858963 pmcid: 6394100 doi: 10.1186/s13229-018-0246-0
Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.
pubmed: 14606691 doi: 10.1034/j.1601-183X.2003.00037.x
Mannion A, Leader G. Epilepsy in autism spectrum disorder. Res Autism Spectr Disord. 2014;8:354–61.
doi: 10.1016/j.rasd.2013.12.012
Cellot G, Cherubini E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr. 2014;2:70.
pubmed: 25072038 pmcid: 4085902 doi: 10.3389/fped.2014.00070
Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, Ogshea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.
pubmed: 21796121 pmcid: 4155501 doi: 10.1038/nature10360
Gyulai L, Bowden CL, McElroy SL, Calabrese JR, Petty F, Swann AC, et al. Maintenance efficacy of divalproex in the prevention of bipolar depression. Neuropsychopharmacology. 2003;28:1374–82.
pubmed: 12784116 doi: 10.1038/sj.npp.1300190
Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.
pubmed: 11473107 doi: 10.1074/jbc.M101287200
Christensen J, Grnøborg TK, Srøensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309:1696–703.
pubmed: 23613074 pmcid: 4511955 doi: 10.1001/jama.2013.2270
Bromley RL, Mawer GE, Briggs M, Cheyne C, Clayton-Smith J, García-Fiñana M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol Neurosurg Psychiatry. 2013;84:637–43.
pubmed: 23370617 doi: 10.1136/jnnp-2012-304270
Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, et al. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology. 2008;33:728–40.
pubmed: 18396377 doi: 10.1016/j.psyneuen.2008.02.011
Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology. 2008;33:901–12.
pubmed: 17507914 doi: 10.1038/sj.npp.1301453
Roullet FI, Lai JKY, Foster JA. In utero exposure to valproic acid and autism–a current review of clinical and animal studies. Neurotoxicol Teratol. 2013;36:47–56.
pubmed: 23395807 doi: 10.1016/j.ntt.2013.01.004
Kim KC, Kim P, Go HS, Choi CS, Yang SI, Cheong JH, et al. The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett. 2011;201:137–42.
pubmed: 21195144 doi: 10.1016/j.toxlet.2010.12.018
Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol. 2013;16:91–103.
pubmed: 22093185 doi: 10.1017/S1461145711001714
Rasalam AD, Hailey H, Williams JHG, Moore SJ, Turnpenny PD, Lloyd DJ, et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol. 2005;47:551–5.
pubmed: 16108456 doi: 10.1017/S0012162205001076
Rinaldi T, Kulangara K, Antoniello K, Markram H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc Natl Acad Sci USA. 2007;104:13501–6.
pubmed: 17675408 pmcid: 1948920 doi: 10.1073/pnas.0704391104
Lin HC, Gean PW, Wang CC, Chan YH, Chen PS. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS One. 2013;8:e55248.
pubmed: 23383124 pmcid: 3558482 doi: 10.1371/journal.pone.0055248
Traetta ME, Uccelli NA, Zárate SC, Gómez Cuautle D, Ramos AJ, Reinés A. Long-lasting changes in glial cells isolated from rats subjected to the valproic acid model of autism spectrum disorder. Front Pharmacol. 2021;12:707859.
pubmed: 34421599 pmcid: 8374432 doi: 10.3389/fphar.2021.707859
Yang X, Tomita T, Wines-Samuelson M, Beglopoulos V, Tansey MG, Kopan R, et al. Notch1 signaling influences V2 interneuron and motor neuron development in the spinal cord. Dev Neurosci. 2006;28:102–17.
pubmed: 16508308 doi: 10.1159/000090757
Iijima Y, Behr K, Iijima T, Biemans B, Bischofberger J, Scheiffele P. Distinct defects in synaptic differentiation of neocortical neurons in response to prenatal valproate exposure. Sci Rep. 2016;6:27400.
pubmed: 27264355 pmcid: 4893673 doi: 10.1038/srep27400
Yuzaki M. Two classes of secreted synaptic organizers in the central nervous system. Annu Rev Physiol. 2018;80:243–62.
pubmed: 29166241 doi: 10.1146/annurev-physiol-021317-121322
Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell. 2000;101:657–69.
pubmed: 10892652 doi: 10.1016/S0092-8674(00)80877-6
Gan KJ, Südhof TC. SPARCL1 promotes excitatory but not inhibitory synapse formation and function independent of neurexins and neuroligins. J Neurosci. 2020;40:8088–102.
pubmed: 32973045 pmcid: 7574652 doi: 10.1523/JNEUROSCI.0454-20.2020
Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature. 2010;465:783–7.
pubmed: 20505669 pmcid: 4137042 doi: 10.1038/nature09041
Martín-de-Saavedra MD, Dos Santos M, Culotta L, Varea O, Spielman BP, Parnell E, et al. Shed CNTNAP2 ectodomain is detectable in CSF and regulates Ca2+ homeostasis and network synchrony via PMCA2/ATP2B2. Neuron. 2022;110:627–.e9.
pubmed: 34921780 doi: 10.1016/j.neuron.2021.11.025
Tomita T, Maruyama K, Saido TCTC, Kume H, Shinozaki K, Tokuhiro S, et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA. 1997;94:2025–30.
pubmed: 9050898 pmcid: 20036 doi: 10.1073/pnas.94.5.2025
Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, et al. The role of presenilin cofactors in the γ-secretase complex. Nature. 2003;422:438–41.
pubmed: 12660785 doi: 10.1038/nature01506
Araki M, Ito K, Takatori S, Ito G, Tomita T. BORCS6 is involved in the enlargement of lung lamellar bodies in Lrrk2 knockout mice. Hum Mol Genet. 2021;30:1618–31.
pubmed: 34077533 doi: 10.1093/hmg/ddab146
Kanatsu K, Morohashi Y, Suzuki M, Kuroda H, Watanabe T, Tomita T, et al. Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase. Nat Commun. 2014;5:1–12.
doi: 10.1038/ncomms4386
Fukumoto H, Tomita T, Matsunaga H, Ishibashi Y, Saido TC, Iwatsubo T. Primary cultures of neuronal and non-neuronal rat brain cells secrete similar proportions of amyloid β peptides ending at Aβ40 and Aβ42. Neuroreport. 1999;10:2965–9.
pubmed: 10549806 doi: 10.1097/00001756-199909290-00017
Yumoto T, Kimura M, Nagatomo R, Sato T, Utsunomiya S, Aoki N, et al. Autism-associated variants of neuroligin 4X impair synaptogenic activity by various molecular mechanisms. Mol Autism. 2020;11:68.
pubmed: 32873342 pmcid: 7465329 doi: 10.1186/s13229-020-00373-y
Matsuzaki M, Yokoyama M, Yoshizawa Y, Kaneko N, Naito H, Kobayashi H, et al. ADAMTS4 is involved in the production of the Alzheimer disease amyloid biomarker APP669-711. Mol Psychiatry. 2023. https://doi.org/10.1038/S41380-023-01946-Y .
Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K, et al. Activity-dependent proteolytic cleavage of neuroligin-1. Neuron. 2012;76:410–22.
pubmed: 23083742 doi: 10.1016/j.neuron.2012.10.003
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of Pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.
pubmed: 18035408 doi: 10.1016/j.cell.2007.11.019
Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder-Free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4:3594.
pubmed: 24399248 pmcid: 3884228 doi: 10.1038/srep03594
Oceguera-Yanez F, Kim SI, Matsumoto T, Tan GW, Xiang L, Hatani T, et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods. 2016;101:43–55.
pubmed: 26707206 doi: 10.1016/j.ymeth.2015.12.012
Kuhn PH, Koroniak K, Hogl S, Colombo A, Zeitschel U, Willem M, et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 2012;31:3157–68.
pubmed: 22728825 pmcid: 3400020 doi: 10.1038/emboj.2012.173
Kuhn P-H, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, et al. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. Elife. 2016;5:e12748.
pubmed: 26802628 pmcid: 4786429 doi: 10.7554/eLife.12748
Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996;68:850–8.
pubmed: 8779443 doi: 10.1021/ac950914h
Kasahara Y, Koyama R, Ikegaya Y. Depth and time-dependent heterogeneity of microglia in mouse hippocampal slice cultures. Neurosci Res. 2016;111:64–69.
pubmed: 27211829 doi: 10.1016/j.neures.2016.05.001
Koyama R, Muramatsu R, Sasaki T, Kimura R, Ueyama C, Tamura M, et al. A Low-cost method for brain slice cultures. J Pharmacol Sci. 2007;104:191–4.
pubmed: 17558179 doi: 10.1254/jphs.SC0070119
Carim-Todd L, Escarceller M, Estivill X, Sumoy L. LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur J Neurosci. 2003;18:3167–82.
pubmed: 14686891 doi: 10.1111/j.1460-9568.2003.03003.x
Matsunami N, Hadley D, Hensel CH, Christensen GB, Kim C, Frackelton E, et al. Identification of rare recurrent copy number variants in high-risk autism families and their prevalence in a large ASD population. PLoS One. 2013;8:e52239.
pubmed: 23341896 pmcid: 3544904 doi: 10.1371/journal.pone.0052239
Gazzellone MJ, Zhou X, Lionel AC, Uddin M, Thiruvahindrapuram B, Liang S, et al. Copy number variation in Han Chinese individuals with autism spectrum disorder. J Neurodev Disord. 2014;6:34.
pubmed: 25170348 pmcid: 4147384 doi: 10.1186/1866-1955-6-34
Ji G, Li S, Ye L, Guan J. Gene module analysis reveals cell-type specificity and potential target genes in autism’s pathogenesis. Biomedicines. 2021;9:410.
pubmed: 33920310 pmcid: 8069308 doi: 10.3390/biomedicines9040410
Kikuchi K, Kidana K, Tatebe T, Tomita T. Dysregulated metabolism of the Amyloid-β protein and therapeutic approaches in Alzheimer disease. J Cell Biochem. 2017;118:4183–90.
pubmed: 28488760 doi: 10.1002/jcb.26129
Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood. 2003;102:1186–95.
pubmed: 12714508 doi: 10.1182/blood-2002-12-3775
Saftig P, Lichtenthaler SF. The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog Neurobiol. 2015;135:1–20.
pubmed: 26522965 doi: 10.1016/j.pneurobio.2015.10.003
Zhang Y, Pak CH, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78:785–98.
pubmed: 23764284 pmcid: 3751803 doi: 10.1016/j.neuron.2013.05.029
Guillemain A, Laouarem Y, Cobret L, Štefok D, Chen W, Bloch S, et al. LINGO family receptors are differentially expressed in the mouse brain and form native multimeric complexes. FASEB J. 2020;34:13641–53.
pubmed: 32862444 doi: 10.1096/fj.202000826R
Kimura H, Fujita Y, Kawabata T, Ishizuka K, Wang C, Iwayama Y, et al. A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Transl Psychiatry. 2017;7:e1214.
pubmed: 28892071 pmcid: 5611737 doi: 10.1038/tp.2017.170
Schlepckow K, Kleinberger G, Fukumori A, Feederle R, Lichtenthaler SF, Steiner H, et al. An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. EMBO Mol Med. 2017;9:1356–65.
pubmed: 28855300 pmcid: 5623859 doi: 10.15252/emmm.201707672
Thornton P, Sevalle J, Deery MJ, Fraser G, Zhou Y, Ståhl S, et al. TREM2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer’s disease-associated H157Y variant. EMBO Mol Med. 2017;9:1366–78.
pubmed: 28855301 pmcid: 5623839 doi: 10.15252/emmm.201707673

Auteurs

Fumiaki Yoshida (F)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Ryota Nagatomo (R)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Shun Utsunomiya (S)

Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan.

Misaki Kimura (M)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Shiyori Shun (S)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Rena Kono (R)

Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Yuma Kato (Y)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Yosuke Nao (Y)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Kazuma Maeda (K)

Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan.

Ryuta Koyama (R)

Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
5Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.

Yuji Ikegaya (Y)

Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan.

Stefan F Lichtenthaler (SF)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

Sho Takatori (S)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Hiroshi Takemoto (H)

Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan.
Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.

Koichi Ogawa (K)

Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan.

Genta Ito (G)

Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.
Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Taisuke Tomita (T)

Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. taisuke@mol.f.u-tokyo.ac.jp.
Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. taisuke@mol.f.u-tokyo.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH