Fluorinated compounds in paper and paperboard based food packaging materials.
Journal
NPJ science of food
ISSN: 2396-8370
Titre abrégé: NPJ Sci Food
Pays: England
ID NLM: 101739627
Informations de publication
Date de publication:
23 Oct 2024
23 Oct 2024
Historique:
received:
02
01
2024
accepted:
16
10
2024
medline:
24
10
2024
pubmed:
24
10
2024
entrez:
23
10
2024
Statut:
epublish
Résumé
Paper- and paperboard-based materials are alternatives to petroleum-based plastics in food packaging but unsuitable for their poor moisture and oil resistance. In this sense, fluorinated compounds improve water and grease repellency, though their use is controversial. This Perspective discusses main techniques to combine fluorinated compounds with paper and paperboard, including water and oil contact angles and grease resistance values, and summarizes main legal aspects in Europe and the United States.
Identifiants
pubmed: 39443478
doi: 10.1038/s41538-024-00326-2
pii: 10.1038/s41538-024-00326-2
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
82Informations de copyright
© 2024. The Author(s).
Références
United Nations, World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100 | UN DESA | United Nations Department of Economic and Social Affairs, Un.Org. 8–12 (2017).
Guzman-Puyol, S., Benítez, J. J. & Heredia-Guerrero, J. A. Transparency of polymeric food packaging materials. Food Res. Int. 161, 111792 (2022).
doi: 10.1016/j.foodres.2022.111792
pubmed: 36192881
Deshwal, G. K., Panjagari, N. R. & Alam, T. An overview of paper and paper based food packaging materials: health safety and environmental concerns. J. Food Sci. Technol. 56, 4391–4403 (2019).
doi: 10.1007/s13197-019-03950-z
pubmed: 31686671
pmcid: 6801293
Heredia-Guerrero, J. A. et al. Plasticized, greaseproof chitin bioplastics with high transparency and biodegradability. Food Hydrocoll. 109072. https://doi.org/10.1016/J.FOODHYD.2023.109072 (2023).
Khwaldia, K., Arab-Tehrany, E. & Desobry S. Biopolymer coatings on paper packaging materials. Compr. Rev. Food Sci. Food Saf. 9. https://doi.org/10.1111/j.1541-4337.2009.00095.x (2010).
Trier, X., Granby, K. & Christensen, J. H. Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging. Environ. Sci. Pollut. Res. 18. https://doi.org/10.1007/s11356-010-0439-3 (2011).
Nechita, P. & Iana-Roman, M. R. Review on polysaccharides used in coatings for food packaging papers. Coatings. 10. https://doi.org/10.3390/COATINGS10060566 (2020).
Auras, R., Harte, B. & Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 4. https://doi.org/10.1002/mabi.200400043 (2004).
Jeong, S. & Yoo, S. R. Whey protein concentrate-beeswax-sucrose suspension-coated paperboard with enhanced water vapor and oil-barrier efficiency. Food Package Shelf Life. 25. https://doi.org/10.1016/j.fpsl.2020.100530 (2020).
L. A. Schaider et al. Fluorinated Compounds in U.S. Fast Food Packaging. Environ. Sci. Technol. Lett. 4. https://doi.org/10.1021/acs.estlett.6b00435 (2017).
Barhoumi, B., Sander, S. G. & Tolosa, I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environ. Res. 206. https://doi.org/10.1016/j.envres.2021.112595 (2022).
Améduri, B. Fluoropolymers as unique and irreplaceable materials: challenges and future trends in these specific per or poly-fluoroalkyl substances *. Molecules. 28. https://doi.org/10.3390/molecules28227564 (2023).
Vorst, K. L., Saab, N., Silva, P., Curtzwiler, G. & Steketee, A. Risk assessment of per- and polyfluoroalkyl substances (PFAS) in food: Symposium proceedings. Trends Food Sci. Technol. https://doi.org/10.1016/j.tifs.2021.05.038 (2021).
Pinkert, A., Marsh, K. N., Pang, S. & Staiger, M. P. Ionic liquids and their interaction with cellulose. Chem. Rev. 109. https://doi.org/10.1021/cr9001947 (2009).
Heinze, T., Liebert,Y. & Koschella, K. Esterification of polysaccharides (Springer Berlin Heidelberg, 2006).
Schwartz-Narbonne, H. et al. Per- and Polyfluoroalkyl Substances in Canadian Fast Food Packaging. Environ. Sci. Technol. Lett. 10. https://doi.org/10.1021/acs.estlett.2c00926 (2023).
Buck, R. C., Korzeniowski, S. H., Laganis, E. & Adamsky, F. Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS). Integr. Environ. Assess. Manag. 17. https://doi.org/10.1002/ieam.4450 (2021).
Henry, B. J. et al. A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integr. Environ. Assess. Manag. 14. https://doi.org/10.1002/ieam.4035 (2018).
Bokkers, B. et al. Per- and polyfluoroalkyl substances (PFASs) in food contact materials. RIVM Lett. Rep. 2018–0181 (2018).
Buck R. C. et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 7. https://doi.org/10.1002/ieam.258 (2011).
Meiron, T. S. & Saguy, I. S. Wetting properties of food packaging. Food Res. Int. 40. https://doi.org/10.1016/j.foodres.2006.11.010 (2007).
Tavana, H., Jehnichen, D., Grundke, K., Hair, M. L. & Neumann, A. W. Contact angle hysteresis on fluoropolymer surfaces. Adv. Colloid Interface Sci. 134–135. https://doi.org/10.1016/j.cis.2007.04.008 (2007).
Cherpinsky, M. J., Ting, Y. P. R. & Moulton, J. D. Thin film lamination-delamination process for fluoropolymers, WO2004069533A1, (2003).
Hubbe, M. A. Paper’s resistance to wetting - A review of internal sizing chemicals and their effects. BioResources. 2. https://doi.org/10.15376/biores.2.1.106-145 (2007).
Freville, E., Sergienko, J. P., Mujica, R., Rey, C. & Bras, J. Novel technologies for producing tridimensional cellulosic materials for packaging: a review. Carbohydr. Polym. 342, 122413 (2024).
doi: 10.1016/j.carbpol.2024.122413
pubmed: 39048242
Lesmeister, L. et al. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants – A review. Sci. Total Environ. 766. https://doi.org/10.1016/j.scitotenv.2020.142640 (2021).
Pierozan, P., Cattani, D. & Karlsson, O. Tumorigenic activity of alternative per- and polyfluoroalkyl substances (PFAS): mechanistic in vitro studies. Sci. Total Environ. 808. https://doi.org/10.1016/j.scitotenv.2021.151945 (2022).
Guzman-Puyol, S. et al. Greaseproof, hydrophobic, and biodegradable food packaging bioplastics from C6-fluorinated cellulose esters. Food Hydrocoll. 128, 107562 (2022).
doi: 10.1016/j.foodhyd.2022.107562
Kelly, B. C. et al. Perfluoroalkyl contaminants in an arctic marine food web: Trophic magnification and wildlife exposure. Environ. Sci. Technol. 43. https://doi.org/10.1021/es9003894 (2009).
UN Global Plastic Treaty, (n.d.). https://www.unep.org/inc-plastic-pollution .
European Commission, Regulation (EC) No 1935/2004 “on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC,” Off J Eur Union L338/4 (2004).
E. Commission. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union 12, 1–89 (2011).
Commission Regulation (EC) No 2023/2006., Commission Regulation (EC) No 2023/2006 of 22 December 2006 on good manufacturing practice for materials and articles intended to come into contact with food, Off J Eur Union L384 (2006).
EU PFAS restriction - Plastics Europe, (n.d.). https://fluoropolymers.eu/eu-pfas-restriction/ (accessed August 30, 2024).
Food and Drug Administration (FDA), CFR Code of Federal Regulations Title 21 FOOD AND DRUGS, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm (2017).
Gu, H., Wu, J. & Doan, H. Hydrophilicity enhancement of high-density polyethylene film by ozonation. Chem. Eng. Technol. 32. https://doi.org/10.1002/ceat.200800433 (2009).
Extrand, C. W. Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir 19. https://doi.org/10.1021/la0268350 (2003).
Kwon, O. J., Tang, S., Myung, S. W., Lu, N. & Choi, H. S. Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coatings Technol. 192. https://doi.org/10.1016/j.surfcoat.2004.09.018 (2005).
Huang, L. et al. Properties of thermoplastic starch films reinforced with modified cellulose nanocrystals obtained from cassava residues. N. J. Chem. 43. https://doi.org/10.1039/c9nj02623a (2019).
Ilangovan, M., Gan, H., Kabe, T. & Iwata,T. Bio-based polymer blend with tunable properties developed from paramylon hexanoate and poly(butylene succinate). Polymer 270. https://doi.org/10.1016/j.polymer.2023.125791 (2023).
Raza, Z. A., Rehman, M. S. & Riaz, S. Zinc sulfide mediation of poly(hydroxybutyrate)/poly(lactic acid) nanocomposite film for potential UV protection applications. Int. J. Biol. Macromol. 222. https://doi.org/10.1016/j.ijbiomac.2022.10.006 (2022).
Wang, L. F. & Rhim, J. W. Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT 74. https://doi.org/10.1016/j.lwt.2016.07.066 (2016).
Liu, D., Duan, Y., Wang, S., Gong, M. & Dai, H. Improvement of oil and water barrier properties of food packaging paper by coating with microcrystalline wax emulsion. Polymers 14. https://doi.org/10.3390/polym14091786 (2022).
Roy, S. & Rhim, J. W. Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surf. B Biointerfaces. 176. https://doi.org/10.1016/j.colsurfb.2019.01.023 (2019).
Wang, L. F., Shankar, S. & Rhim, J. W. Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll. 63. https://doi.org/10.1016/j.foodhyd.2016.08.041 (2017).
Ren, W., Qiang, T. & Chen, L. Recyclable and biodegradable pectin-based film with high mechanical strength. Food Hydrocoll. 129. https://doi.org/10.1016/j.foodhyd.2022.107643 (2022).
Zarandona, I., Minh, N. C., Trung, T. S., de la Caba, K. & Guerrero, P. Evaluation of bioactive release kinetics from crosslinked chitosan films with Aloe vera. Int. J. Biol. Macromol. 182. https://doi.org/10.1016/j.ijbiomac.2021.05.087 (2021).
Patil, S. et al. Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Biosci. 44. https://doi.org/10.1016/j.fbio.2021.101352 (2021).
Ahammed, S., Liu, F., Khin, M. N., Yokoyama, W. H. & Zhong, F. Improvement of the water resistance and ductility of gelatin film by zein. Food Hydrocoll. 105. https://doi.org/10.1016/j.foodhyd.2020.105804 (2020).
Xiao, Y., Liu, Y., Kang, S. & Xu, H. Insight into the formation mechanism of soy protein isolate films improved by cellulose nanocrystals. Food Chem. 359. https://doi.org/10.1016/j.foodchem.2021.129971 (2021).
Andonegi, M. et al. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr. Polym. 237. https://doi.org/10.1016/j.carbpol.2020.116159 (2020).
Willberg-Keyriläinen, P., Ropponen, J., Alakomi, H. L. & Vartiainen, J. Cellulose fatty acid ester coated papers for stand-up pouch applications. J. Appl. Polym. Sci. 135. https://doi.org/10.1002/app.46936 (2018).
Tanpichai, S., Srimarut, Y., Woraprayote, W. & Malila, Y. Chitosan coating for the preparation of multilayer coated paper for food-contact packaging: Wettability, mechanical properties, and overall migration. Int. J. Biol. Macromol. 213, 534–545 (2022).
doi: 10.1016/j.ijbiomac.2022.05.193
pubmed: 35661671
Vaswani, S., Koskinen, J. & Hess, D. W. Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films. Surf. Coatings Technol. 195. https://doi.org/10.1016/j.surfcoat.2004.10.013 (2005).
Bongiovanni, R., Zeno, E., Pollicino, A., Serafini, P. M. & Tonelli, C. UV light-induced grafting of fluorinated monomer onto cellulose sheets. Cellulose. 18. https://doi.org/10.1007/s10570-010-9451-5 (2011).
Bongiovanni, R., Marchi, S., Zeno, S., Pollicino, A. & Thomas, R. R. Water resistance improvement of filter paper by a UV-grafting modification with a fluoromonomer. Colloids Surf. A Physicochem. Eng. Asp. 418. https://doi.org/10.1016/j.colsurfa.2012.11.003 (2013).
Khanjani, P. et al. Superhydrophobic paper from nanostructured fluorinated cellulose esters. ACS Appl. Mater. Interfaces. 10, 11280–11288 (2018).
doi: 10.1021/acsami.7b19310
pubmed: 29518309
pmcid: 6095637
Saleem, J., Ning, C., Barford, J. & McKay, G. Combating oil spill problem using plastic waste. Waste Manag. 44. https://doi.org/10.1016/j.wasman.2015.06.003 (2015).
Brown, P. S. & Bhushan, B. Mechanically durable liquid-impregnated honeycomb surfaces. Sci. Rep. 7. https://doi.org/10.1038/s41598-017-06621-1 (2017).
Hu, K., Huyan, Z., Ding, S., Dong, Y. & Yu, X. Investigation on food packaging polymers: effects on vegetable oil oxidation. Food Chem. 315. https://doi.org/10.1016/j.foodchem.2020.126299 (2020).
Liu, X., Choi, H. S., Park, B. R. & Lee, H. E. Amphiphobicity of polyvinylidene fluoride porous films after atmospheric pressure plasma intermittent etching. Appl. Surf. Sci. 257. https://doi.org/10.1016/j.apsusc.2011.04.069 (2011).
Solvay, Halar ECTFE Design & Processing Guide, https://www.solvay.com/sites/g/files/srpend221/files/2018-07/halar-ectfe-design-and-processing-guide-en.pdf (2016).
Yuan, R. et al. Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings. ACS Appl. Mater. Interfaces. 8. https://doi.org/10.1021/acsami.6b03961 (2016).
Wang, Y. et al. Interfacial structures, surface tensions, and contact angles of diiodomethane on fluorinated polymers. J. Phys. Chem. C. 118. https://doi.org/10.1021/jp501683d (2014).
Xie, J. et al. Facile synthesis of fluorine-free cellulosic paper with excellent oil and grease resistance. Cellulose 27. https://doi.org/10.1007/s10570-020-03248-w (2020).
Bordenave, N., Grelier, S. & Coma, V. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules 11. https://doi.org/10.1021/bm9009528 (2010).
Gatto, M., D. Ochi, C. M., Yoshida, P. & da Silva, C. F. Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydr. Polym. 210, 56–63. https://doi.org/10.1016/J.CARBPOL.2019.01.053 (2019).
U. C. Paul, J. A. Heredia-Guerrero, Paper and Cardboard Reinforcement by Impregnation with Environmentally Friendly High-Performance Polymers for Food Packaging Applications. Sustain. Food Package Technol. https://doi.org/10.1002/9783527820078.ch10 (2021).
Ham-Pichavant, F., Sèbe, G., Pardon, P. & Coma, V. Fat resistance properties of chitosan-based paper packaging for food applications. Carbohydr. Polym. 61. https://doi.org/10.1016/j.carbpol.2005.01.020 (2005).