Isolation, characterization, and assessment of Bacillus rugosus potential as a new probiotic for aquaculture applications.
Bacillus rugosus
Aqua feed
Gut health
Probiotic
Sustainability
Tilapia
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 10 2024
23 10 2024
Historique:
received:
26
06
2024
accepted:
26
09
2024
medline:
24
10
2024
pubmed:
24
10
2024
entrez:
23
10
2024
Statut:
epublish
Résumé
Aquaculture is an important component of the world food supply and a significant source of protein. However, this industry faces numerous problems. Including poor fish feed digestion and uneconomic nutrient utilization. This can result in unsatisfactory growth rates and poor stock performance. Utilizing probiotics, which are beneficial microbes that can enhance digestive systems and general fish health, is one possible way to address these issues. This study was designed to identify and evaluate a novel strain of Bacillus as a promising probiotic. The strain of Bacillus rugosus that was examined and coded NM007 showed promising probiotic characteristics that could help fish digest and utilize their feed more efficiently, reduce feed waste, and improve their digestive systems. B. rugosus NM007 exhibited the ability to produce digestive enzymes like protease, amylase, and lipase, which are the main digestive enzymes. It showed strong auto-aggregation activity and co-aggregation activity with Aeromonas sp. and Streptococcus sp. It also demonstrated tolerance to the presence of bile salt, acidic pH, and salinity up to 60 ppt. The sensitivity analysis towards antibiotics, hemolytic activity and the safety assessment on Nile tilapia fish (Oreochromis niloticus) confirmed the safety of this isolate. Based on the findings of this investigation and the isolate's characterization, Bacillus rugosus NM007 could serve as a new promising probiotic bacterium for aquaculture.
Identifiants
pubmed: 39443501
doi: 10.1038/s41598-024-74534-x
pii: 10.1038/s41598-024-74534-x
doi:
Substances chimiques
Amylases
EC 3.2.1.-
Lipase
EC 3.1.1.3
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25019Informations de copyright
© 2024. The Author(s).
Références
FAO. The state of world fisheries and aquaculture 2022. In The State of World Fisheries and Aquaculture 2022. https://doi.org/10.4060/cc0461en (2022).
Khan, R. Sustainable aquaculture practices for Food Security and Livelihoods. Int. J. Agro Stud. Life Sci. 2, 7–13 (2023).
Abdella, B., El-Wazzan, E., El-Sersy, N. A., Sabry, S. A. & El-Helow, E. R. Pathogenicity and antibiotic susceptibility of two bacterial pathogens associated with the clam Tapes decussatus in some Egyptian fisheries. Ege J. Fish. Aquat. Sci. 34, 383–389 (2017).
Abdella, B., Abozahra, N. A., Shokrak, N. M., Mohamed, R. A., & Helow, E. R. El. Whole spectrum of Aeromonas hydrophila virulence determinants and the identification of novel SNPs using comparative pathogenomics. Sci. Rep. 1–11. https://doi.org/10.1038/s41598-023-34887-1 (2023).
El-Sayed, A. F. M. & Dickson, M. W. El-Naggar, G. O. Value chain analysis of the aquaculture feed sector in Egypt. Aquaculture. 437, 92–101 (2015).
doi: 10.1016/j.aquaculture.2014.11.033
Ansari, F. A., Guldhe, A., Gupta, S. K., Rawat, I. & Bux, F. Improving the feasibility of aquaculture feed by using microalgae. Environ. Sci. Pollut Res. 28, 43234–43257 (2021).
doi: 10.1007/s11356-021-14989-x
Abdella, B. et al. Aquaculture and Aeromonas hydrophila: a complex interplay of environmental factors and virulence. Aquac Int. https://doi.org/10.1007/s10499-024-01535-y (2024).
Nathanailides, C. et al. Addressing Phosphorus Waste in Open Flow Freshwater Fish farms: challenges and solutions. Fishes. 8, 1–17 (2023).
doi: 10.3390/fishes8090442
Ramesh, D., Vinothkanna, A., Rai, A. K. & Vignesh, V. S. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish. Shellfish Immunol. 45, 268–276 (2015).
pubmed: 25917974
doi: 10.1016/j.fsi.2015.04.018
Olmos, J., Acosta, M., Mendoza, G. & Pitones, V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch. Microbiol. 202, 427–435 (2020).
pubmed: 31773195
doi: 10.1007/s00203-019-01757-2
Ghalwash, H. R. et al. Dietary supplementation with Bacillus species improves growth, intestinal histomorphology, innate immunity, antioxidative status and expression of growth and appetite-regulating genes of Nile tilapia fingerlings. Aquac Res. 53, 1378–1394 (2022).
doi: 10.1111/are.15671
Assan, D. et al. Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comp. Biochem. Physiol. Part. - B Biochem. Mol. Biol. 257, 110653 (2022).
doi: 10.1016/j.cbpb.2021.110653
Jahari, M. A., Mustafa, S., Abd Manap, Y. & Lamasudin, D. Hakim Roslan, M. A. Encapsulation of Lactobacillus plantarum with Mannan and Sodium Alginate improves its cell production. J. Biochem. Microbiol. Biotechnol. 7, 17–22 (2019).
doi: 10.54987/jobimb.v7i1.447
El-Wazzan, E., Ghareeb, D. A. & Abdella, B. Pre-induction of Hsp70 expression to protect the grooved carpet shell clam, Ruditapes Decussatus, against Micrococcus luteus: a trained immunity strategy. Egypt. J. Aquat. Res. 46, 79–84 (2020).
doi: 10.1016/j.ejar.2019.10.004
Ali, S., Xie, J., Zada, S., Hu, Z., Zhang, Y., Cai, R., & Wang, H. (2022). Bacterial community structure and bacterial isolates having antimicrobial potential in shrimp pond aquaculture. AMB Express. 12(1). https://doi.org/10.1186/s13568-022-01423-9 (2022).
Harnentis, H. et al. Novel probiotic lactic acid bacteria isolated from indigenous fermented foods from West Sumatera, Indonesia. Vet. World. 13, 1922–1927 (2020).
pubmed: 33132606
pmcid: 7566266
doi: 10.14202/vetworld.2020.1922-1927
Amoah, K. et al. Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish. Shellfish Immunol. 87, 796–808 (2019).
pubmed: 30790661
doi: 10.1016/j.fsi.2019.02.029
Mir, M. A., Ashraf, M. W., Hussain, A., Mir, B. A. & Isolation Detection, and Estimation of Various Amylase Producing Bacteria in various soil samples. Curr. Organocatalysis. 9, 46–52 (2021).
doi: 10.2174/2213337208666210609124432
Kuebutornye, F. K. A. et al. In vitro Assessment of the probiotic characteristics of three Bacillus species from the gut of Nile Tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins. 12, 412–424 (2020).
pubmed: 31243734
doi: 10.1007/s12602-019-09562-5
Dabiré, Y. et al. Assessment of probiotic and technological properties of Bacillus spp. isolated from Burkinabe Soumbala. BMC Microbiol. 22, 1–13 (2022).
doi: 10.1186/s12866-022-02642-7
Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E. & Lumyong, S. Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. ScienceAsia. 28, 241–245 (2002).
doi: 10.2306/scienceasia1513-1874.2002.28.241
Screening, H. E. H. & P. E., D., E. U., M. & Isolation and characterization of Amylase Producing Bacteria and Optimization for Production of Amylase. J. Adv. Microbiol. 22, 27–51 (2022).
Al-Dhabi, N. A., Esmail, G. A., Ghilan, A. K. M. & Arasu, M. V. Isolation and screening of Streptomyces sp. Al-Dhabi-49 from the environment of Saudi Arabia with concomitant production of lipase and protease in submerged fermentation. Saudi J. Biol. Sci. 27, 474–479 (2020).
pubmed: 31889873
doi: 10.1016/j.sjbs.2019.11.011
Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617 (2017).
pubmed: 28005526
pmcid: 5563544
doi: 10.1099/ijsem.0.001755
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887
pmcid: 5967553
doi: 10.1093/molbev/msy096
Sam-on, M. F. S. et al. Evaluation of three Bacillus spp. isolated from the gut of giant freshwater prawn as potential probiotics against pathogens causing Vibriosis and Aeromonosis. Microb. Pathog. 164, 105417 (2022).
pubmed: 35085717
doi: 10.1016/j.micpath.2022.105417
CLSI. CLSI. Performance Standards for Antimicrobial Testing, 30th edn. (Clinical and Laboratory Strandards Institute, 2020).
Boyd, C. E., McNevin, A. A. & Davis, R. P. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 14, 805–827 (2022).
pubmed: 35075379
pmcid: 8771179
doi: 10.1007/s12571-021-01246-9
Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., Atakpa, E. O., Agu, C. V., & Okoye, C. O. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. In Environmental Science and Pollution Research, vol 29, issue 46. (Springer Berlin Heidelberg, 2022). https://doi.org/10.1007/s11356-022-22319-y .
Aboleila, S. M., Salah, A., Mohamed, R. A. & Diab, A. M. Combined effect of a mixture of Bacillus species and vaccination on haemato-biochemical parameters, immune response and transcriptomic changes of Nile tilapia challenged with Streptococcus iniae. Aquac Res. https://doi.org/10.1111/are.15989 (2022).
Moustafa, E. M. et al. Efficacy of Bacillus probiotic mixture on the immunological responses and histopathological changes of Nile tilapia (Oreochromis niloticus, L) challenged with Streptococcus iniae. Aquac Res. 52, 2205–2219 (2021).
doi: 10.1111/are.15073
Kuebutornye, F. K. A. et al. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish. Physiol. Biochem. 46, 819–841 (2020).
pubmed: 31953625
doi: 10.1007/s10695-019-00754-y
Nayak, S. K. Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Rev. Aquac. 13, 862–906 (2021).
doi: 10.1111/raq.12503
Bhattacharya, D., de los Santos Villalobos, S., Ruiz, V. V., Selvin, J. & Mukherjee, J. Bacillus rugosus sp. nov. producer of a diketopiperazine antimicrobial, isolated from marine sponge Spongia officinalis L. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 113, 1675–1687 (2020).
doi: 10.1007/s10482-020-01472-9
Ray, A. K., Ghosh, K. & Ringø, E. Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr. 18, 465–492 (2012).
doi: 10.1111/j.1365-2095.2012.00943.x
Samson, J. S., Choresca, C. H. & Quiazon, K. M. A. Selection and screening of bacteria from African nightcrawler, Eudrilus eugeniae (Kinberg, 1867) as potential probiotics in aquaculture. World J. Microbiol. Biotechnol. 36, 1–10 (2020).
doi: 10.1007/s11274-019-2793-8
Bull, M., Plummer, S., Marchesi, J. & Mahenthiralingam, E. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol. Lett. 349, 77–87 (2013).
pubmed: 24152174
doi: 10.1111/1574-6968.12293
Gilliland, S. E., Staley, T. E. & Bush, L. J. Importance of bile tolerance of Lactobacillus acidophilus used as a Dietary Adjunct. J. Dairy. Sci. 67, 3045–3051 (1984).
pubmed: 6442304
doi: 10.3168/jds.S0022-0302(84)81670-7
Wang, Y. et al. In vitro assessment of probiotic properties of Bacillus isolated from naturally fermented congee from Inner Mongolia of China. World J. Microbiol. Biotechnol. 26, 1369–1377 (2010).
doi: 10.1007/s11274-010-0309-7
Ayyash, M. M. et al. Invited review: characterization of new probiotics from dairy and nondairy products—insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J. Dairy. Sci. 104, 8363–8379 (2021).
pubmed: 33934857
doi: 10.3168/jds.2021-20398
Hyronimus, B., Le Marrec, C., Hadj Sassi, A. & Deschamps, A. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61, 193–197 (2000).
pubmed: 11078170
doi: 10.1016/S0168-1605(00)00366-4
Okochi, M., Sugita, T., Asai, Y., Tanaka, M. & Honda, H. Screening of peptides associated with adhesion and aggregation of Lactobacillus rhamnosus GG in vitro. Biochem. Eng. J. 128, 178–185 (2017).
doi: 10.1016/j.bej.2017.10.004
Aina, F. et al. Probiotic properties of Bacillus strains isolated from Stingless Bee (Heterotrigona itama) Honey collected across Malaysia. Int. J. Environ. Res. Public. Health. 17, 1–15 (2020).
Mladenović, K. G., Grujović, M., Nikodijević, D. D. & čOmić, L. R. The hydrophobicity of enterobacteria and their co-aggregation with Enterococcus faecalis isolated from Serbian cheese. Biosci. Microbiota Food Heal. 39, 227–233 (2020).
doi: 10.12938/bmfh.2020-004
Boris, S., Suárez, J. E. & Barbés, C. Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J. Appl. Microbiol. 83, 413–420 (1997).
pubmed: 9351223
doi: 10.1046/j.1365-2672.1997.00250.x
Reid, G., McGroarty, J. A., Angotti, R. & Cook, R. L. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 34, 344–351 (1988).
pubmed: 3138017
doi: 10.1139/m88-063
Anokyewaa, M. A. et al. Prevalence of virulence genes and antibiotic susceptibility of Bacillus used in commercial aquaculture probiotics in China. Aquac Rep. 21, 100784 (2021).
doi: 10.1016/j.aqrep.2021.100784
Jian, Z. et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control. J. Basic. Microbiol. 61, 1049–1070 (2021).
pubmed: 34651331
doi: 10.1002/jobm.202100201
Mujawar, S., Abdella, B., & Lahiri, C. Strategic role players of important antimicrobial-resistant pathogens. In Antimicrobial resistance - a one health perspective (IntechOpen, 2021). https://doi.org/10.5772/intechopen.92742 .
Abdella, M., Abdella, B., & Lahiri, C. Rediscovering and repurposing natural microbial macromolecules through computational approaches. In Microbial and Natural Macromolecules (eds Das, S. & Dash, H. R.) 373–400 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-820084-1.00016-8 .
Yasmin, I. et al. In vitro probiotic potential and safety evaluation (hemolytic, cytotoxic activity) of bifidobacterium strains isolated from raw camel milk. Microorganisms 8, (2020).
Elsabagh, M. et al. Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac Nutr. 24, 1613–1622 (2018).
doi: 10.1111/anu.12797
Xia, Y., Wang, M., Gao, F., Lu, M. & Chen, G. Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Anim. Nutr. 6, 69–79 (2020).
pubmed: 32211531
doi: 10.1016/j.aninu.2019.07.002
Wang, M. et al. Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquac Res. 48, 3163–3173 (2017).
doi: 10.1111/are.13146