Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) protein.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
23 Oct 2024
23 Oct 2024
Historique:
received:
14
06
2023
accepted:
04
10
2024
medline:
24
10
2024
pubmed:
24
10
2024
entrez:
24
10
2024
Statut:
epublish
Résumé
Genetically encoded fluorescent biosensors became indispensable tools for biological research, enabling real-time observation of physiological processes in live cells. Recent protein engineering efforts have resulted in the generation of a large variety of fluorescent biosensors for a wide range of biologically relevant processes, from small ions to enzymatic activity and signaling pathways. However, biosensors for imaging sulfate ions, the fourth most abundant physiological anion, in mammalian cells are still lacking. Here, we report the development and characterization of a green fluorescent biosensor for sulfate named Thyone. Thyone, derived through structure-guided design from bright green fluorescent protein mNeonGreen, exhibited a large negative fluorescence response upon subsecond association with sulfate anion with an affinity of 11 mM in mammalian cells. By integrating mutagenesis analyses with molecular dynamics simulations, we elucidated the molecular mechanism of sulfate binding and revealed key amino acid residues responsible for sulfate sensitivity. High anion selectivity and sensitivity of Thyone allowed for imaging of sulfate anion transients mediated by sulfate transporter heterologously expressed in cultured mammalian cells. We believe that Thyone will find a broad application for assaying the sulfate transport in mammalian cells via anion transporters and exchangers.
Identifiants
pubmed: 39443638
doi: 10.1038/s42003-024-07020-9
pii: 10.1038/s42003-024-07020-9
doi:
Substances chimiques
Sulfates
0
Sulfate Transporters
0
Green Fluorescent Proteins
147336-22-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1375Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32171093
Informations de copyright
© 2024. The Author(s).
Références
Torres-Ocampo, A. P. & Palmer, A. E. Genetically encoded fluorescent sensors for metals in biology. Curr. Opin. Chem. Biol. 74, 102284 (2023).
pubmed: 36917910
doi: 10.1016/j.cbpa.2023.102284
Piatkevich, K. D., Murdock, M. H. & Subach, F. V. Advances in engineering and application of optogenetic indicators for neuroscience. Appl. Sci. 9, 562 (2019).
Baek, K., Ji, K., Peng, W., Liyanaarachchi, S. M. & Dodani, S. C. The design and evolution of fluorescent protein-based sensors for monoatomic ions in biology. Protein Eng. Des. Sel. 34, 1–9 (2021).
doi: 10.1093/protein/gzab023
Chen, T.-W. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
pubmed: 23868258
pmcid: 3777791
doi: 10.1038/nature12354
Subach, O. M. et al. Novel genetically encoded bright positive calcium indicator NCaMP7 based on the mneongreen fluorescent protein. Int. J. Mol. Sci. 21, 1644 (2020).
pubmed: 32121243
pmcid: 7084697
doi: 10.3390/ijms21051644
Barykina, N. V. et al. Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi. PLoS One 12, e0183757 (2017).
pubmed: 28837632
pmcid: 5570312
doi: 10.1371/journal.pone.0183757
Subach, O. M. et al. YTnC2, an improved genetically encoded green calcium indicator based on toadfish troponin C. FEBS Open Bio 13, 2047–2060 (2023).
pubmed: 37650870
pmcid: 10626279
doi: 10.1002/2211-5463.13702
Subach, O. M. O. M., Barykina, N. V. N. V., Anokhin, K. V. K. V., Piatkevich, K. D. K. D. & Subach, F. V. F. V. Near-infrared genetically encoded positive calcium indicator based on GAF-FP bacterial phytochrome. Int. J. Mol. Sci. 20, 3488 (2019).
pubmed: 31315229
pmcid: 6678319
doi: 10.3390/ijms20143488
Shen, Y. et al. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun. Biol. 2, 1–10 (2019).
doi: 10.1038/s42003-018-0269-2
Torres Cabán, C. C. et al. Tuning the sensitivity of genetically encoded fluorescent potassium indicators through structure-guided and genome mining strategies. ACS Sens. 7, 1336–1346 (2022).
pubmed: 35427452
pmcid: 9150168
doi: 10.1021/acssensors.1c02201
Bizzarri, R. et al. Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies. Biophys. J. 90, 3300–3314 (2006).
pubmed: 16603505
pmcid: 1432127
doi: 10.1529/biophysj.105.074708
Shen, Y., Rosendale, M., Campbell, R. E. & Perrais, D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J. Cell Biol. 207, 419–432 (2014).
pubmed: 25385186
pmcid: 4226733
doi: 10.1083/jcb.201404107
Pérez, V. et al. MagIC, a genetically encoded fluorescent indicator for monitoring cellular Mg2+ using a non-Förster resonance energy transfer ratiometric imaging approach. 20, 101203 https://doi.org/10.1117/1.JBO.20.10.101203 (2015).
Minckley, T. F. et al. Sub-nanomolar sensitive GZnP3 reveals TRPML1-mediated neuronal Zn2+ signals. Nat. Commun 10, 1–14 (2019).
doi: 10.1038/s41467-019-12761-x
Liang, G.-T. et al. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol. 10, 1039317 (2022).
pubmed: 36324888
pmcid: 9618808
doi: 10.3389/fbioe.2022.1039317
Grimley, J. S. et al. Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. J. Neurosci. 33, 16297–16309 (2013).
pubmed: 24107961
pmcid: 3792465
doi: 10.1523/JNEUROSCI.4616-11.2013
Gu, H. et al. A novel analytical method for in vivo phosphate tracking. FEBS Lett. 580, 5885–5893 (2006).
pubmed: 17034793
pmcid: 2748124
doi: 10.1016/j.febslet.2006.09.048
Ong, W. S. Y. et al. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing**. Angew. Chemie Int. Ed. e202302304 https://doi.org/10.1002/ANIE.202302304 (2023).
Fatima, U. et al. A non-invasive tool for real-time measurement of sulfate in living cells. Int. J. Mol. Sci. 21, 2572 (2020).
pubmed: 32272790
pmcid: 7177696
doi: 10.3390/ijms21072572
Markovich, D. Physiological roles and regulation of mammalian sulfate transporters. Physiol. Rev. 81, 1499–1533 (2001).
pubmed: 11581495
doi: 10.1152/physrev.2001.81.4.1499
Alper, S. L. & Sharma, A. K. The SLC26 gene family of anion transporters and channels. Mol. Asp. Med. 34, 494–515 (2013).
doi: 10.1016/j.mam.2012.07.009
Ohana, E., Shcheynikov, N., Park, M. & Muallem, S. Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SO 42-/OH -/Cl - exchanger regulated by extracellular Cl. J. Biol. Chem. 287, 5122–5132 (2012).
pubmed: 22190686
doi: 10.1074/jbc.M111.297192
Dawson, P. & Markovich, D. Pathogenetics of the Human SLC26 Transporters. Curr. Med. Chem. 12, 385–396 (2012).
doi: 10.2174/0929867053363144
Karniski, L. P. Functional expression and cellular distribution of diastrophic dysplasia sulfate transporter (DTDST) gene mutations in HEK cells. Hum. Mol. Genet. 13, 2165–2171 (2004).
pubmed: 15294877
doi: 10.1093/hmg/ddh242
Karniski, L. P. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: Correlation between sulfate transport activity and chondrodysplasia phenotype. Hum. Mol. Genet. 10, 1485–1490 (2001).
pubmed: 11448940
doi: 10.1093/hmg/10.14.1485
Girard, J. P., Baekkevold, E. S., Feliu, J., Brandtzaeg, P. & Amalric, F. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venulles. Proc. Natl Acad. Sci. Usa. 96, 12772–12777 (1999).
pubmed: 10535998
pmcid: 23093
doi: 10.1073/pnas.96.22.12772
Clavel, D. et al. Structural analysis of the bright monomeric yellow-green fluorescent protein mNeonGreen obtained by directed evolution. urn:issn:2059-7983 72, 1298–1307 (2016).
Tutol, J. N., Kam, H. C. & Dodani, S. C. Identification of mNeonGreen as a pH-Dependent, Turn-On Fluorescent Protein Sensor for Chloride. ChemBioChem 20, cbic.201900147 (2019).
Barykina, N. V. et al. A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites. Sci. Rep. 6, 1–15 (2016).
doi: 10.1038/srep34447
Lüscher, B. P., Vachel, L., Ohana, E. & Muallem, S. Cl- as a bona fide signaling ion. Am. J. Physiol. - Cell Physiol. 318, C125–C136 (2020).
pubmed: 31693396
doi: 10.1152/ajpcell.00354.2019
Li, Y., Zhou, X. & Sun, S. X. Hydrogen, bicarbonate, and their associated exchangers in cell volume regulation. Front. Cell Dev. Biol. 9, 683686 (2021).
pubmed: 34249935
pmcid: 8264760
doi: 10.3389/fcell.2021.683686
Jones, R. T., Faas, G. C. & Mody, I. Intracellular bicarbonate regulates action potential generation via KCNQ channel modulation. J. Neurosci. 34, 4409–4417 (2014).
pubmed: 24647960
pmcid: 3960478
doi: 10.1523/JNEUROSCI.3836-13.2014
Malekova, L. et al. Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels. Pflug. Arch. Eur. J. Physiol. 455, 349–357 (2007).
doi: 10.1007/s00424-007-0300-9
Li, Y. & Tsien, R. W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 2012 157 15, 1047–1053 (2012).
Chen, C. et al. Excitation ratiometric chloride sensing in a standalone yellow fluorescent protein is powered by the interplay between proton transfer and conformational reorganization. Chem. Sci. 12, 11382–11393 (2021).
pubmed: 34667546
pmcid: 8447875
doi: 10.1039/D1SC00847A
Arosio, D. et al. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat. Methods 7, 516–518 (2010).
pubmed: 20581829
doi: 10.1038/nmeth.1471
Sato, S. S. et al. Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc. Natl Acad. Sci. Usa. 114, E8770–E8779 (2017).
Linghu, C. et al. Spatial multiplexing of fluorescent reporters for imaging signaling network dynamics. Cell 183, 1682–1698.e24 (2020).
pubmed: 33232692
pmcid: 7771521
doi: 10.1016/j.cell.2020.10.035
Sui, J. et al. Optimization of a yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators. 656–669 https://doi.org/10.1089/adt.2010.0312 (2010).
Merkert, S. et al. High-throughput screening for modulators of CFTR activity based on genetically engineered cystic fibrosis disease-specific iPSCs. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2019.04.014 (2019).
Cole, D. E. C. & Evrovski, J. Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography. J. Chromatogr. A 789, 221–232 (1997).
pubmed: 9440288
doi: 10.1016/S0021-9673(97)00821-2
Mohapatra, N. K. et al. Sulfate concentrations and transport in human bronchial epithelial cells. Am. J. Physiol. - Cell Physiol. 264, C1231–C1237 (1993).
doi: 10.1152/ajpcell.1993.264.5.C1231
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).
pubmed: 23524392
pmcid: 3811051
doi: 10.1038/nmeth.2413
Subach, O. M. et al. cNTnC and fYTnC2, genetically encoded green calcium indicators based on troponin C from fast animals. Int. J. Mol. Sci. 23, 14614 (2022).
pubmed: 36498942
pmcid: 9741049
doi: 10.3390/ijms232314614
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. urn:issn:0907-4449 66, 12–21 (2009).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Case: Amber18 (University of San Francisco) - Google Scholar. https://scholar.google.com/scholar_lookup?title=Amber18&author=DA+Case&author=IY+Ben-Shalom&author=SR+Brozell&author=DS+Cerutti&author=TE+Cheatham&publication_year=2018& .
Breyfogle, K. L., Blood, D. L., Rosnik, A. M. & Krueger, B. P. Molecular dynamics force field parameters for the EGFP chromophore and some of its analogues. J. Phys. Chem. B 127, 5772–5788 (2023).
pubmed: 37357785
pmcid: 10331734
doi: 10.1021/acs.jpcb.3c01486
Maier, J. A. et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).
pubmed: 26574453
pmcid: 4821407
doi: 10.1021/acs.jctc.5b00255
Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97, 10269–10280 (1993).
doi: 10.1021/j100142a004
Huige, C. J. M. & Altona, C. Force field parameters for sulfates and sulfamates based on ab initio calculations: Extensions of AMBER and CHARMm fields. J. Comput. Chem. 16, 56–79 (1995).
doi: 10.1002/jcc.540160106
Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).
pubmed: 26583988
doi: 10.1021/ct400341p
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
pubmed: 8744570
doi: 10.1016/0263-7855(96)00018-5
Piatkevich, K. D., Yang, L. & Lai, C. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) Protein. FigShare https://figshare.com/articles/dataset/_b_Genetically_Encoded_Green_Fluorescent_Sensor_for_Probing_Sulfate_Transport_Activity_of_Solute_Carrier_Family_26_Member_a2_Slc26a2_Protein_b_/27143766 (2024).
Pathiranage, V. & Walker, A. R. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) Protein. Zenodo https://doi.org/10.5281/ZENODO.10416670 (2024).