Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) protein.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
23 Oct 2024
Historique:
received: 14 06 2023
accepted: 04 10 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 24 10 2024
Statut: epublish

Résumé

Genetically encoded fluorescent biosensors became indispensable tools for biological research, enabling real-time observation of physiological processes in live cells. Recent protein engineering efforts have resulted in the generation of a large variety of fluorescent biosensors for a wide range of biologically relevant processes, from small ions to enzymatic activity and signaling pathways. However, biosensors for imaging sulfate ions, the fourth most abundant physiological anion, in mammalian cells are still lacking. Here, we report the development and characterization of a green fluorescent biosensor for sulfate named Thyone. Thyone, derived through structure-guided design from bright green fluorescent protein mNeonGreen, exhibited a large negative fluorescence response upon subsecond association with sulfate anion with an affinity of 11 mM in mammalian cells. By integrating mutagenesis analyses with molecular dynamics simulations, we elucidated the molecular mechanism of sulfate binding and revealed key amino acid residues responsible for sulfate sensitivity. High anion selectivity and sensitivity of Thyone allowed for imaging of sulfate anion transients mediated by sulfate transporter heterologously expressed in cultured mammalian cells. We believe that Thyone will find a broad application for assaying the sulfate transport in mammalian cells via anion transporters and exchangers.

Identifiants

pubmed: 39443638
doi: 10.1038/s42003-024-07020-9
pii: 10.1038/s42003-024-07020-9
doi:

Substances chimiques

Sulfates 0
Sulfate Transporters 0
Green Fluorescent Proteins 147336-22-9

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1375

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32171093

Informations de copyright

© 2024. The Author(s).

Références

Torres-Ocampo, A. P. & Palmer, A. E. Genetically encoded fluorescent sensors for metals in biology. Curr. Opin. Chem. Biol. 74, 102284 (2023).
pubmed: 36917910 doi: 10.1016/j.cbpa.2023.102284
Piatkevich, K. D., Murdock, M. H. & Subach, F. V. Advances in engineering and application of optogenetic indicators for neuroscience. Appl. Sci. 9, 562 (2019).
Baek, K., Ji, K., Peng, W., Liyanaarachchi, S. M. & Dodani, S. C. The design and evolution of fluorescent protein-based sensors for monoatomic ions in biology. Protein Eng. Des. Sel. 34, 1–9 (2021).
doi: 10.1093/protein/gzab023
Chen, T.-W. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
pubmed: 23868258 pmcid: 3777791 doi: 10.1038/nature12354
Subach, O. M. et al. Novel genetically encoded bright positive calcium indicator NCaMP7 based on the mneongreen fluorescent protein. Int. J. Mol. Sci. 21, 1644 (2020).
pubmed: 32121243 pmcid: 7084697 doi: 10.3390/ijms21051644
Barykina, N. V. et al. Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi. PLoS One 12, e0183757 (2017).
pubmed: 28837632 pmcid: 5570312 doi: 10.1371/journal.pone.0183757
Subach, O. M. et al. YTnC2, an improved genetically encoded green calcium indicator based on toadfish troponin C. FEBS Open Bio 13, 2047–2060 (2023).
pubmed: 37650870 pmcid: 10626279 doi: 10.1002/2211-5463.13702
Subach, O. M. O. M., Barykina, N. V. N. V., Anokhin, K. V. K. V., Piatkevich, K. D. K. D. & Subach, F. V. F. V. Near-infrared genetically encoded positive calcium indicator based on GAF-FP bacterial phytochrome. Int. J. Mol. Sci. 20, 3488 (2019).
pubmed: 31315229 pmcid: 6678319 doi: 10.3390/ijms20143488
Shen, Y. et al. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun. Biol. 2, 1–10 (2019).
doi: 10.1038/s42003-018-0269-2
Torres Cabán, C. C. et al. Tuning the sensitivity of genetically encoded fluorescent potassium indicators through structure-guided and genome mining strategies. ACS Sens. 7, 1336–1346 (2022).
pubmed: 35427452 pmcid: 9150168 doi: 10.1021/acssensors.1c02201
Bizzarri, R. et al. Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies. Biophys. J. 90, 3300–3314 (2006).
pubmed: 16603505 pmcid: 1432127 doi: 10.1529/biophysj.105.074708
Shen, Y., Rosendale, M., Campbell, R. E. & Perrais, D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J. Cell Biol. 207, 419–432 (2014).
pubmed: 25385186 pmcid: 4226733 doi: 10.1083/jcb.201404107
Pérez, V. et al. MagIC, a genetically encoded fluorescent indicator for monitoring cellular Mg2+ using a non-Förster resonance energy transfer ratiometric imaging approach. 20, 101203 https://doi.org/10.1117/1.JBO.20.10.101203 (2015).
Minckley, T. F. et al. Sub-nanomolar sensitive GZnP3 reveals TRPML1-mediated neuronal Zn2+ signals. Nat. Commun 10, 1–14 (2019).
doi: 10.1038/s41467-019-12761-x
Liang, G.-T. et al. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol. 10, 1039317 (2022).
pubmed: 36324888 pmcid: 9618808 doi: 10.3389/fbioe.2022.1039317
Grimley, J. S. et al. Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. J. Neurosci. 33, 16297–16309 (2013).
pubmed: 24107961 pmcid: 3792465 doi: 10.1523/JNEUROSCI.4616-11.2013
Gu, H. et al. A novel analytical method for in vivo phosphate tracking. FEBS Lett. 580, 5885–5893 (2006).
pubmed: 17034793 pmcid: 2748124 doi: 10.1016/j.febslet.2006.09.048
Ong, W. S. Y. et al. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing**. Angew. Chemie Int. Ed. e202302304 https://doi.org/10.1002/ANIE.202302304 (2023).
Fatima, U. et al. A non-invasive tool for real-time measurement of sulfate in living cells. Int. J. Mol. Sci. 21, 2572 (2020).
pubmed: 32272790 pmcid: 7177696 doi: 10.3390/ijms21072572
Markovich, D. Physiological roles and regulation of mammalian sulfate transporters. Physiol. Rev. 81, 1499–1533 (2001).
pubmed: 11581495 doi: 10.1152/physrev.2001.81.4.1499
Alper, S. L. & Sharma, A. K. The SLC26 gene family of anion transporters and channels. Mol. Asp. Med. 34, 494–515 (2013).
doi: 10.1016/j.mam.2012.07.009
Ohana, E., Shcheynikov, N., Park, M. & Muallem, S. Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SO 42-/OH -/Cl - exchanger regulated by extracellular Cl. J. Biol. Chem. 287, 5122–5132 (2012).
pubmed: 22190686 doi: 10.1074/jbc.M111.297192
Dawson, P. & Markovich, D. Pathogenetics of the Human SLC26 Transporters. Curr. Med. Chem. 12, 385–396 (2012).
doi: 10.2174/0929867053363144
Karniski, L. P. Functional expression and cellular distribution of diastrophic dysplasia sulfate transporter (DTDST) gene mutations in HEK cells. Hum. Mol. Genet. 13, 2165–2171 (2004).
pubmed: 15294877 doi: 10.1093/hmg/ddh242
Karniski, L. P. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: Correlation between sulfate transport activity and chondrodysplasia phenotype. Hum. Mol. Genet. 10, 1485–1490 (2001).
pubmed: 11448940 doi: 10.1093/hmg/10.14.1485
Girard, J. P., Baekkevold, E. S., Feliu, J., Brandtzaeg, P. & Amalric, F. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venulles. Proc. Natl Acad. Sci. Usa. 96, 12772–12777 (1999).
pubmed: 10535998 pmcid: 23093 doi: 10.1073/pnas.96.22.12772
Clavel, D. et al. Structural analysis of the bright monomeric yellow-green fluorescent protein mNeonGreen obtained by directed evolution. urn:issn:2059-7983 72, 1298–1307 (2016).
Tutol, J. N., Kam, H. C. & Dodani, S. C. Identification of mNeonGreen as a pH-Dependent, Turn-On Fluorescent Protein Sensor for Chloride. ChemBioChem 20, cbic.201900147 (2019).
Barykina, N. V. et al. A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites. Sci. Rep. 6, 1–15 (2016).
doi: 10.1038/srep34447
Lüscher, B. P., Vachel, L., Ohana, E. & Muallem, S. Cl- as a bona fide signaling ion. Am. J. Physiol. - Cell Physiol. 318, C125–C136 (2020).
pubmed: 31693396 doi: 10.1152/ajpcell.00354.2019
Li, Y., Zhou, X. & Sun, S. X. Hydrogen, bicarbonate, and their associated exchangers in cell volume regulation. Front. Cell Dev. Biol. 9, 683686 (2021).
pubmed: 34249935 pmcid: 8264760 doi: 10.3389/fcell.2021.683686
Jones, R. T., Faas, G. C. & Mody, I. Intracellular bicarbonate regulates action potential generation via KCNQ channel modulation. J. Neurosci. 34, 4409–4417 (2014).
pubmed: 24647960 pmcid: 3960478 doi: 10.1523/JNEUROSCI.3836-13.2014
Malekova, L. et al. Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels. Pflug. Arch. Eur. J. Physiol. 455, 349–357 (2007).
doi: 10.1007/s00424-007-0300-9
Li, Y. & Tsien, R. W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 2012 157 15, 1047–1053 (2012).
Chen, C. et al. Excitation ratiometric chloride sensing in a standalone yellow fluorescent protein is powered by the interplay between proton transfer and conformational reorganization. Chem. Sci. 12, 11382–11393 (2021).
pubmed: 34667546 pmcid: 8447875 doi: 10.1039/D1SC00847A
Arosio, D. et al. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat. Methods 7, 516–518 (2010).
pubmed: 20581829 doi: 10.1038/nmeth.1471
Sato, S. S. et al. Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc. Natl Acad. Sci. Usa. 114, E8770–E8779 (2017).
Linghu, C. et al. Spatial multiplexing of fluorescent reporters for imaging signaling network dynamics. Cell 183, 1682–1698.e24 (2020).
pubmed: 33232692 pmcid: 7771521 doi: 10.1016/j.cell.2020.10.035
Sui, J. et al. Optimization of a yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators. 656–669 https://doi.org/10.1089/adt.2010.0312 (2010).
Merkert, S. et al. High-throughput screening for modulators of CFTR activity based on genetically engineered cystic fibrosis disease-specific iPSCs. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2019.04.014 (2019).
Cole, D. E. C. & Evrovski, J. Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography. J. Chromatogr. A 789, 221–232 (1997).
pubmed: 9440288 doi: 10.1016/S0021-9673(97)00821-2
Mohapatra, N. K. et al. Sulfate concentrations and transport in human bronchial epithelial cells. Am. J. Physiol. - Cell Physiol. 264, C1231–C1237 (1993).
doi: 10.1152/ajpcell.1993.264.5.C1231
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).
pubmed: 23524392 pmcid: 3811051 doi: 10.1038/nmeth.2413
Subach, O. M. et al. cNTnC and fYTnC2, genetically encoded green calcium indicators based on troponin C from fast animals. Int. J. Mol. Sci. 23, 14614 (2022).
pubmed: 36498942 pmcid: 9741049 doi: 10.3390/ijms232314614
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. urn:issn:0907-4449 66, 12–21 (2009).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Case: Amber18 (University of San Francisco) - Google Scholar. https://scholar.google.com/scholar_lookup?title=Amber18&author=DA+Case&author=IY+Ben-Shalom&author=SR+Brozell&author=DS+Cerutti&author=TE+Cheatham&publication_year=2018& .
Breyfogle, K. L., Blood, D. L., Rosnik, A. M. & Krueger, B. P. Molecular dynamics force field parameters for the EGFP chromophore and some of its analogues. J. Phys. Chem. B 127, 5772–5788 (2023).
pubmed: 37357785 pmcid: 10331734 doi: 10.1021/acs.jpcb.3c01486
Maier, J. A. et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).
pubmed: 26574453 pmcid: 4821407 doi: 10.1021/acs.jctc.5b00255
Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97, 10269–10280 (1993).
doi: 10.1021/j100142a004
Huige, C. J. M. & Altona, C. Force field parameters for sulfates and sulfamates based on ab initio calculations: Extensions of AMBER and CHARMm fields. J. Comput. Chem. 16, 56–79 (1995).
doi: 10.1002/jcc.540160106
Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).
pubmed: 26583988 doi: 10.1021/ct400341p
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
pubmed: 8744570 doi: 10.1016/0263-7855(96)00018-5
Piatkevich, K. D., Yang, L. & Lai, C. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) Protein. FigShare https://figshare.com/articles/dataset/_b_Genetically_Encoded_Green_Fluorescent_Sensor_for_Probing_Sulfate_Transport_Activity_of_Solute_Carrier_Family_26_Member_a2_Slc26a2_Protein_b_/27143766 (2024).
Pathiranage, V. & Walker, A. R. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) Protein. Zenodo https://doi.org/10.5281/ZENODO.10416670 (2024).

Auteurs

Cuixin Lai (C)

School of Life Science, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China.

Lina Yang (L)

School of Life Science, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China.

Vishaka Pathiranage (V)

Department of Chemistry, Wayne State University, Detroit, MI, USA.

Ruizhao Wang (R)

School of Life Science, Westlake University, Hangzhou, Zhejiang, China.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China.

Fedor V Subach (FV)

Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, Russia.

Alice R Walker (AR)

Department of Chemistry, Wayne State University, Detroit, MI, USA. arwalker@wayne.edu.

Kiryl D Piatkevich (KD)

School of Life Science, Westlake University, Hangzhou, Zhejiang, China. kiryl.piatkevich@westlake.edu.cn.
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. kiryl.piatkevich@westlake.edu.cn.
Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China. kiryl.piatkevich@westlake.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH