Tooth numbering with polygonal segmentation on periapical radiographs: an artificial intelligence study.

Artificial intelligence Deep learning Periapical radiography Polygonal segmentation Tooth numbering

Journal

Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115

Informations de publication

Date de publication:
25 Oct 2024
Historique:
received: 15 07 2024
accepted: 13 10 2024
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 24 10 2024
Statut: epublish

Résumé

Accurately identification and tooth numbering on radiographs is essential for any clinicians. The aim of the present study was to validate the hypothesis that Yolov5, a type of artificial intelligence model, can be trained to detect and number teeth in periapical radiographs. Six thousand four hundred forty six anonymized periapical radiographs without motion-related artifacts were randomly selected from the database. All periapical radiographs in which all boundaries of any tooth could be distinguished were included in the study. The radiographic images used were randomly divided into three groups: 80% training, 10% validation, and 10% testing. The confusion matrix was used to examine model success. During the test phase, 2578 labelings were performed on 644 periapical radiographs. The number of true positive was 2434 (94.4%), false positive was 115 (4.4%), and false negative was 29 (1.2%). The recall, precision, and F1 scores were 0.9882, 0.9548, and 0.9712, respectively. Moreover, the model yielded an area under curve (AUC) of 0.603 on the receiver operating characteristic curve (ROC). This study showed us that YOLOv5 is nearly perfect for numbering teeth on periapical radiography. Although high success rates were achieved as a result of the study, it should not be forgotten that artificial intelligence currently only can be guides dentists for accurate and rapid diagnosis. It is thought that dentists can accelerate the radiographic examination time and inexperienced dentists can reduce the error rate by using YOLOv5. Additionally, YOLOv5 can also be used in the education of dentistry students.

Identifiants

pubmed: 39448462
doi: 10.1007/s00784-024-05999-3
pii: 10.1007/s00784-024-05999-3
doi:

Types de publication

Journal Article Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

610

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Başaran M, Çelik Ö, Bayrakdar IS, Bilgir E, Orhan K, Odabaş A, Aslan AF, Jagtap R (2022) Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiol 38(3):363–369. https://doi.org/10.1007/s11282-021-00572-0
doi: 10.1007/s11282-021-00572-0 pubmed: 34611840
Dayo AF, Wolff MS, Syed AZ, Mupparapu M (2021) Radiology of Dental Caries. Dent Clin North Am 65(3):427–445. https://doi.org/10.1016/j.cden.2021.02.002
doi: 10.1016/j.cden.2021.02.002 pubmed: 34051924
Li S, Liu J, Zhou Z, Zhou Z, Wu X, Li Y, Wang S, Liao W, Ying S, Zhao Z (2022) Artificial intelligence for caries and periapical periodontitis detection. J Dent 122:104107. https://doi.org/10.1016/j.jdent.2022.104107
doi: 10.1016/j.jdent.2022.104107 pubmed: 35341892
Estai M, Tennant M, Gebauer D, Brostek A, Vignarajan J, Mehdizadeh M, Saha S (2022) Deep learning for automated detection and numbering of permanent teeth on panoramic images. Dentomaxillofac Radiol 51(2):20210296. https://doi.org/10.1259/dmfr.20210296
doi: 10.1259/dmfr.20210296 pubmed: 34644152
Antony DP, Thomas T, Nivedhitha MS (2020) Two-dimensional Periapical, panoramic radiography Versus three-dimensional cone-beam computed Tomography in the detection of Periapical Lesion after Endodontic Treatment: a systematic review. Cureus 12(4):e7736. https://doi.org/10.7759/cureus.7736
doi: 10.7759/cureus.7736 pubmed: 32440383 pmcid: 7237056
Adurty C, Tejaswi KS, Shivani CRN, Navya D, Gopinath C, Dhulipalla R (2021) Accuracy of digital intraoral periapical radiography and cone-beam computed tomography in the measurement of intrabony defects: a comparative study. J Indian Soc Periodontol 25(6):491–495. https://doi.org/10.4103/jisp.jisp_518_20
doi: 10.4103/jisp.jisp_518_20 pubmed: 34898914 pmcid: 8603792
Huamán SD, Brito Aragão MG, Dias Moreno AP, Mussolino de Queiroz A, Bezerra da Silva RA, Garcia de Paula-Silva FW, Bezerra da Silva LA (2020) Accuracy of conventional periapical radiography in diagnosing Furcation Repair after Perforation Treatment. J Endod 46(6):827–831. https://doi.org/10.1016/j.joen.2020.03.004
Şeker O, Kamburoğlu K, Şahin C, Eratam N, Çakmak EE, Sönmez G, Özen D (2021) In vitro comparison of high-definition US, CBCT and periapical radiography in the diagnosis of proximal and recurrent caries. Dentomaxillofac Radiol 50(8):20210026. https://doi.org/10.1259/dmfr.20210026
doi: 10.1259/dmfr.20210026 pubmed: 33979235 pmcid: 8611281
Alaugaily I, Azim AA (2022) CBCT patterns of bone loss and clinical predictors for the diagnosis of Cracked Teeth and Teeth with Vertical Root fracture. J Endod 48(9):1100–1106. https://doi.org/10.1016/j.joen.2022.06.004
doi: 10.1016/j.joen.2022.06.004 pubmed: 35714728
Singh GK, Yadav N, Duhan R, Tewari J, Gupta S, Sangwan A, Mittal P S (2021) Comparative analysis of the accuracy of periapical radiography and cone-beam computed tomography for diagnosing complex endodontic pathoses using a gold standard reference - A prospective clinical study. Int Endod J 54(9):1448–1461. https://doi.org/10.1111/iej.13535
doi: 10.1111/iej.13535 pubmed: 33904603
Talpos-Niculescu RM, Popa M, Rusu LC, Pricop MO, Nica LM, Talpos-Niculescu S (2021) Conservative Approach in the management of large Periapical Cyst-Like lesions. A report of two cases. Med (Kaunas) 57(5):497. https://doi.org/10.3390/medicina57050497
doi: 10.3390/medicina57050497
Vadiati Saberi B, Khosravifard N, Nooshmand K, Dalili Kajan Z, Ghaffari ME (2021) Fractal analysis of the trabecular bone pattern in the presence/absence of metal artifact-producing objects: comparison of cone-beam computed tomography with panoramic and periapical radiography. Dentomaxillofac Radiol 50(6):20200559. https://doi.org/10.1259/dmfr.20200559
doi: 10.1259/dmfr.20200559 pubmed: 33705225 pmcid: 8404512
Cameriere R, De Luca S, Soriano Vázquez I, Kiş HC, Pigolkin Y, Kumagai A, Ferrante L (2021) A full bayesian calibration model for assessing age in adults by means of pulp/tooth area ratio in periapical radiography. Int J Legal Med 135(2):677–685. https://doi.org/10.1007/s00414-020-02438-2
doi: 10.1007/s00414-020-02438-2 pubmed: 33017037
Deyer T, Doshi A (2019) Application of artificial intelligence to radiology. Ann Transl Med 7(11):230. https://doi.org/10.21037/atm.2019.05.79
doi: 10.21037/atm.2019.05.79 pubmed: 31317000 pmcid: 6603347
Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM (2020) The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol 49(1):20190107. https://doi.org/10.1259/dmfr.20190107
doi: 10.1259/dmfr.20190107 pubmed: 31386555
Abdalla-Aslan R, Yeshua T, Kabla D, Leichter I, Nadler C (2020) An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg Oral Med Oral Pathol Oral Radiol 130(5):593–602. https://doi.org/10.1016/j.oooo.2020.05.012
doi: 10.1016/j.oooo.2020.05.012 pubmed: 32646672
Sukegawa S, Yoshii K, Hara T, Matsuyama T, Yamashita K, Nakano K, Takabatake K, Kawai H, Nagatsuka H, Furuki Y (2021) Multi-task Deep Learning Model for classification of Dental Implant Brand and Treatment Stage using Dental Panoramic Radiograph images. Biomolecules 11(6):815. https://doi.org/10.3390/biom11060815
doi: 10.3390/biom11060815 pubmed: 34070916 pmcid: 8226505
Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, Schwendicke F (2019) Deep learning for the Radiographic Detection of Apical Lesions. J Endod 45(7):917–922e5. https://doi.org/10.1016/j.joen.2019.03.016
doi: 10.1016/j.joen.2019.03.016 pubmed: 31160078
Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E (2020) Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol 36(4):337–343. https://doi.org/10.1007/s11282-019-00409-x
doi: 10.1007/s11282-019-00409-x pubmed: 31535278
Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, Kise Y, Nozawa M, Katsumata A, Fujita H, Ariji E (2019) Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol 35(3):301–307. https://doi.org/10.1007/s11282-018-0363-7
doi: 10.1007/s11282-018-0363-7 pubmed: 30539342
Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, Dörfer C, Schwendicke F (2019) Deep learning for the Radiographic detection of Periodontal Bone loss. Sci Rep 9(1):8495. https://doi.org/10.1038/s41598-019-44839-3
doi: 10.1038/s41598-019-44839-3 pubmed: 31186466 pmcid: 6560098
Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, Huh KH, Lee SS, Heo MS, Choi SC, Kim TI, Yi WJ (2020) Deep learning hybrid method to automatically diagnose Periodontal Bone loss and stage periodontitis. Sci Rep 10(1):7531. https://doi.org/10.1038/s41598-020-64509-z
doi: 10.1038/s41598-020-64509-z pubmed: 32372049 pmcid: 7200807
Liu Z, Liu J, Zhou Z, Zhang Q, Wu H, Zhai G, Han J (2021) Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs. Int J Comput Assist Radiol Surg 16(3):415–422. https://doi.org/10.1007/s11548-021-02309-0
doi: 10.1007/s11548-021-02309-0 pubmed: 33547985 pmcid: 7946691
Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB (2019) Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol 48(4):20180051. https://doi.org/10.1259/dmfr.20180051
doi: 10.1259/dmfr.20180051 pubmed: 30835551 pmcid: 6592580
Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, Li J (2020) Artificial Intelligence for the computer-aided detection of Periapical Lesions in Cone-Beam Computed Tomographic images. J Endod 46(7):987–993. https://doi.org/10.1016/j.joen.2020.03.025
doi: 10.1016/j.joen.2020.03.025 pubmed: 32402466
Bianchi J, de Oliveira Ruellas AC, Gonçalves JR, Paniagua B, Prieto JC, Styner M, Li T, Zhu H, Sugai J, Giannobile W, Benavides E, Soki F, Yatabe M, Ashman L, Walker D, Soroushmehr R, Najarian K, Cevidanes LHS (2020) Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning. Sci Rep 10(1):8012. https://doi.org/10.1038/s41598-020-64942-0
doi: 10.1038/s41598-020-64942-0 pubmed: 32415284 pmcid: 7228972
Kurt Bayrakdar S, Orhan K, Bayrakdar IS, Bilgir E, Ezhov M, Gusarev M, Shumilov E (2021) A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging 21(1):86. https://doi.org/10.1186/s12880-021-00618-z
doi: 10.1186/s12880-021-00618-z pubmed: 34011314
Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK (2015) A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Int J Comput Assist Radiol Surg 10(11):1737–1752. https://doi.org/10.1007/s11548-015-1173-6
doi: 10.1007/s11548-015-1173-6 pubmed: 25847662
Yilmaz E, Kayikcioglu T, Kayipmaz S (2017) Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed 146:91–100. https://doi.org/10.1016/j.cmpb.2017.05.012
doi: 10.1016/j.cmpb.2017.05.012 pubmed: 28688493
Devito KL, de Souza Barbosa F, Felippe Filho WN (2008) An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(6):879–884. https://doi.org/10.1016/j.tripleo.2008.03.002
doi: 10.1016/j.tripleo.2008.03.002 pubmed: 18718785
Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F (2020) Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent 100:103425. https://doi.org/10.1016/j.jdent.2020.103425
doi: 10.1016/j.jdent.2020.103425 pubmed: 32634466
Yasa Y, Çelik Ö, Bayrakdar IS, Pekince A, Orhan K, Akarsu S, Atasoy S, Bilgir E, Odabaş A, Aslan AF (2021) An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol Scand 79(4):275–281. https://doi.org/10.1080/00016357.2020.1840624
doi: 10.1080/00016357.2020.1840624 pubmed: 33176533
Karatas O, Cakir NN, Ozsariyildiz SS, Kis HC, Demirbuga S, Gurgan CA (2021) A deep learning approach to dental restoration classification from bitewing and periapical radiographs. Quintessence Int 52(7):568–574. https://doi.org/10.3290/j.qi.b1244461
doi: 10.3290/j.qi.b1244461 pubmed: 33880914
Pauwels R, Brasil DM, Yamasaki MC, Jacobs R, Bosmans H, Freitas DQ, Haiter-Neto F (2021) Artificial intelligence for detection of periapical lesions on intraoral radiographs: comparison between convolutional neural networks and human observers. Oral Surg Oral Med Oral Pathol Oral Radiol 131(5):610–616. https://doi.org/10.1016/j.oooo.2021.01.018
doi: 10.1016/j.oooo.2021.01.018 pubmed: 33653645
Lee JH, Kim DH, Jeong SN, Choi SH (2018) Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 77:106–111. https://doi.org/10.1016/j.jdent.2018.07.015
doi: 10.1016/j.jdent.2018.07.015 pubmed: 30056118
Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H (2017) Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study. Dentomaxillofac Radiol 46(2):20160107. https://doi.org/10.1259/dmfr.20160107
doi: 10.1259/dmfr.20160107 pubmed: 27786566 pmcid: 5595008
Lee CT, Kabir T, Nelson J, Sheng S, Meng HW, Van Dyke TE, Walji MF, Jiang X, Shams S (2022) Use of the deep learning approach to measure alveolar bone level. J Clin Periodontol 49(3):260–269. https://doi.org/10.1111/jcpe.13574
doi: 10.1111/jcpe.13574 pubmed: 34879437
Cha JY, Yoon HI, Yeo IS, Huh KH, Han JS (2021) Peri-implant bone loss measurement using a region-based convolutional neural network on Dental Periapical radiographs. J Clin Med 10(5):1009. https://doi.org/10.3390/jcm10051009
doi: 10.3390/jcm10051009 pubmed: 33801384 pmcid: 7958615
Zhang K, Wu J, Chen H, Lyu P (2018) An effective teeth recognition method using label tree with cascade network structure. Comput Med Imaging Graph 68:61–70. https://doi.org/10.1016/j.compmedimag.2018.07.001
doi: 10.1016/j.compmedimag.2018.07.001 pubmed: 30056291
Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH (2019) A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep 9(1):3840. https://doi.org/10.1038/s41598-019-40414-y
doi: 10.1038/s41598-019-40414-y pubmed: 30846758 pmcid: 6405755
Bayraktar Y, Ayan E (2022) Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin Oral Investig 26(1):623–632. https://doi.org/10.1007/s00784-021-04040-1
doi: 10.1007/s00784-021-04040-1 pubmed: 34173051
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S (2021) Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci 16(1):508–522. https://doi.org/10.1016/j.jds.2020.06.019
doi: 10.1016/j.jds.2020.06.019 pubmed: 33384840
Bayrakdar IS, Orhan K, Akarsu S, Çelik Ö, Atasoy S, Pekince A, Yasa Y, Bilgir E, Sağlam H, Aslan AF, Odabaş A (2022) Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Oral Radiol 38(4):468–479. https://doi.org/10.1007/s11282-021-00577-9
doi: 10.1007/s11282-021-00577-9 pubmed: 34807344
Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K (2022) Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac Radiol 51(1):20210197. https://doi.org/10.1259/dmfr.20210197
doi: 10.1259/dmfr.20210197 pubmed: 34233515 pmcid: 8693331
Lian L, Zhu T, Zhu F, Zhu H (2021) Deep learning for Caries Detection and classification. Diagnostics (Basel) 11(9):1672. https://doi.org/10.3390/diagnostics11091672
doi: 10.3390/diagnostics11091672 pubmed: 34574013
Amasya H, Cesur E, Yıldırım D, Orhan K (2020) Validation of cervical vertebral maturation stages: Artificial intelligence vs human observer visual analysis. Am J Orthod Dentofac Orthop 158(6):e173–e179. https://doi.org/10.1016/j.ajodo.2020.08.014
doi: 10.1016/j.ajodo.2020.08.014
Agrawal P, Nikhade P (2022) Artificial Intelligence in Dentistry: past, Present, and Future. Cureus 14(7):e27405. https://doi.org/10.7759/cureus.27405
doi: 10.7759/cureus.27405 pubmed: 36046326 pmcid: 9418762
Kim J, Lee HS, Song IS, Jung KH (2019) DeNTNet: deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs. Sci Rep 9(1):17615. https://doi.org/10.1038/s41598-019-53758-2
doi: 10.1038/s41598-019-53758-2 pubmed: 31772195 pmcid: 6879527
Kabir T, Lee CT, Chen L, Jiang X, Shams S (2022) A comprehensive artificial intelligence framework for dental diagnosis and charting. BMC Oral Health 22(1):480. https://doi.org/10.1186/s12903-022-02514-6
doi: 10.1186/s12903-022-02514-6 pubmed: 36352390 pmcid: 9647924
Tangel ML, Fatichah C, Yan F, Betancourt JP, Widyanto MR, Dong F, Hirota K (2014) Dental numbering for periapical radiograph based on multiple fuzzy attribute approach. J Adv Comput Intell Intell Inf 18(3):253–261
doi: 10.20965/jaciii.2014.p0253
Yang R, Song L, Ge Y, Li X (2023) Boxsnake: Polygonal instance segmentation with box supervision. In Proceedings of the IEEE/CVF International Conference on Computer Vision pp. 766–776
Li W, Zhao W, Yu J, Zheng J, He C, Fu H, Lin D (2023) Joint semantic–geometric learning for polygonal building segmentation from high-resolution remote sensing images. ISPRS J Photogrammetry Remote Sens 201:26–37
doi: 10.1016/j.isprsjprs.2023.05.010
Liang J, Homayounfar N, Ma WC, Xiong Y, Hu R, Urtasun R (2020) Polytransform: Deep polygon transformer for instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition pp. 9131–9140
Magat G, Altındag A, Pertek Hatipoglu F, Hatipoglu Ö, Bayrakdar İS, Celik Ö, Orhan K (2024) Automatic deep learning detection of overhanging restorations in bitewing radiographs. Dentomaxillofac Radiol twae036. https://doi.org/10.1093/dmfr/twae036
Görürgöz C, Orhan K, Bayrakdar IS, Çelik Ö, Bilgir E, Odabaş A, Aslan AF, Jagtap R (2022) Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs. Dentomaxillofac Radiol 51(3):20210246. https://doi.org/10.1259/dmfr.20210246
doi: 10.1259/dmfr.20210246 pubmed: 34623893
Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, Srinivasan G, Aljanabi MNA, Donatelli RE, Lee SJ (2019) Automated identification of cephalometric landmarks: part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod 89(6):903–909. https://doi.org/10.2319/022019-127.1
doi: 10.2319/022019-127.1 pubmed: 31282738 pmcid: 8109157
Putra RH, Astuti ER, Putri DK, Widiasri M, Laksanti PAM, Majidah H, Yoda N (2024) Automated permanent tooth detection and numbering on panoramic radiograph using a deep learning approach. Oral Surg Oral Med Oral Pathol Oral Radiol 137(5):537–544. https://doi.org/10.1016/j.oooo.2023.06.003
doi: 10.1016/j.oooo.2023.06.003 pubmed: 37633788
Roganović J, Radenković M, Miličić B (2023) Responsible use of Artificial Intelligence in Dentistry: Survey on dentists’ and final-year. Undergraduates’ Perspect Healthc (Basel) 11(10):1480. https://doi.org/10.3390/healthcare11101480
doi: 10.3390/healthcare11101480
Parasidis E (2017) Clinical decision support: elements of a sensible legal framework. J Health Care L Pol’y 20:183
Yang H, Jo E, Kim HJ, Cha IH, Jung YS, Nam W, Kim JY, Kim JK, Kim YH, Oh TG, Han SS, Kim H, Kim D (2020) Deep learning for automated detection of Cyst and tumors of the Jaw in panoramic radiographs. J Clin Med 9(6):1839. https://doi.org/10.3390/jcm9061839
doi: 10.3390/jcm9061839 pubmed: 32545602 pmcid: 7356620
Kwon O, Yong TH, Kang SR, Kim JE, Huh KH, Heo MS, Lee SS, Choi SC, Yi WJ (2020) Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofac Radiol 49(8):20200185. https://doi.org/10.1259/dmfr.20200185
doi: 10.1259/dmfr.20200185 pubmed: 32574113 pmcid: 7719862
Ding B, Zhang Z, Liang Y, Wang W, Hao S, Meng Z, Guan L, Hu Y, Guo B, Zhao R, Lv Y (2021) Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm. Ann Transl Med 9(21):1622. https://doi.org/10.21037/atm-21-4805
doi: 10.21037/atm-21-4805 pubmed: 34926666 pmcid: 8640896
Moidu NP, Sharma S, Chawla A, Kumar V, Logani A (2022) Deep learning for categorization of endodontic lesion based on radiographic periapical index scoring system. Clin Oral Investig 26(1):651–658. https://doi.org/10.1007/s00784-021-04043-y
doi: 10.1007/s00784-021-04043-y pubmed: 34213664
Bilgir E, Bayrakdar İŞ, Çelik Ö, Orhan K, Akkoca F, Sağlam H, Odabaş A, Aslan AF, Ozcetin C, Kıllı M, Rozylo-Kalinowska I (2021) An artifıcial ıntelligence approach to automatic tooth detection and numbering in panoramic radiographs. BMC Med Imaging 21(1):124. https://doi.org/10.1186/s12880-021-00656-7
doi: 10.1186/s12880-021-00656-7 pubmed: 34388975 pmcid: 8361658
Kılıc MC, Bayrakdar IS, Çelik Ö, Bilgir E, Orhan K, Aydın OB, Kaplan FA, Sağlam H, Odabaş A, Aslan AF, Yılmaz AB (2021) Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol 50(6):20200172. https://doi.org/10.1259/dmfr.20200172
doi: 10.1259/dmfr.20200172 pubmed: 33661699 pmcid: 8404517
Muramatsu C, Morishita T, Takahashi R, Hayashi T, Nishiyama W, Ariji Y, Zhou X, Hara T, Katsumata A, Ariji E, Fujita H (2021) Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data. Oral Radiol 37(1):13–19. https://doi.org/10.1007/s11282-019-00418-w
doi: 10.1007/s11282-019-00418-w pubmed: 31893343
Yaren Tekin B, Ozcan C, Pekince A, Yasa Y (2022) An enhanced tooth segmentation and numbering according to FDI notation in bitewing radiographs. Comput Biol Med 146:105547. https://doi.org/10.1016/j.compbiomed.2022.105547
doi: 10.1016/j.compbiomed.2022.105547 pubmed: 35544975
Guler Ayyildiz B, Karakis R, Terzioglu B, Ozdemir D (2024) Comparison of deep learning methods for the radiographic detection of patients with different periodontitis stages. Dentomaxillofac Radiol 11(1):32–42. https://doi.org/10.1093/dmfr/twad003
doi: 10.1093/dmfr/twad003
Aminoshariae A, Nosrat A, Nagendrababu V, Dianat O, Mohammad-Rahimi H, O’Keefe AW, Setzer FC (2024) Artificial Intelligence in Endodontic Education. J Endod 50(5):562–578. https://doi.org/10.1016/j.joen.2024.02.011
doi: 10.1016/j.joen.2024.02.011 pubmed: 38387793
Schwendicke F, Chaurasia A, Wiegand T, Uribe SE, Fontana M, Akota I, Tryfonos O, Krois J (2023) Artificial intelligence for oral and dental healthcare: core education curriculum. J Dent 128:104363. https://doi.org/10.1016/j.jdent.2022.104363
doi: 10.1016/j.jdent.2022.104363 pubmed: 36410581
Saghiri MA, Vakhnovetsky J, Samadi E, Amanabi M, Morgano SM (2023) CE Credit. Innovating Dental Education with Artificial Intelligence. J Calif Dent Assoc 51(1):2217692
Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A (2020) Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: a survey. Imaging Sci Dent 50(3):193–198. https://doi.org/10.5624/isd.2020.50.3.193
doi: 10.5624/isd.2020.50.3.193 pubmed: 33005576 pmcid: 7506091
Schwendicke F, Samek W, Krois J (2020) Artificial Intelligence in Dentistry: chances and challenges. J Dent Res 99(7):769–774. https://doi.org/10.1177/0022034520915714
doi: 10.1177/0022034520915714 pubmed: 32315260

Auteurs

Halil Ayyıldız (H)

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kutahya Health Science University, Kutahya, Türkiye. hayyil2@uic.edu.
College of Dentistry, University of Illinois Chicago, 801 South Paulina St, Chicago, IL, 60612, USA. hayyil2@uic.edu.

Mukadder Orhan (M)

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Beykent University, Istanbul, Türkiye.

Elif Bilgir (E)

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Türkiye.

Özer Çelik (Ö)

Department of Mathematics-Computer, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Türkiye.

İbrahim Şevki Bayrakdar (İŞ)

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Türkiye.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH