Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 Oct 2024
24 Oct 2024
Historique:
received:
05
03
2024
accepted:
09
10
2024
medline:
25
10
2024
pubmed:
25
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.
Identifiants
pubmed: 39448580
doi: 10.1038/s41467-024-53305-2
pii: 10.1038/s41467-024-53305-2
doi:
Substances chimiques
RNA Polymerase II
EC 2.7.7.-
Cyclin-Dependent Kinases
EC 2.7.11.22
Cyclin-Dependent Kinase-Activating Kinase
EC 2.7.11.22
CDK7 protein, human
0
Tyrosine
42HK56048U
Proline
9DLQ4CIU6V
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9163Subventions
Organisme : Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
ID : 21-24460S
Organisme : Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
ID : 20-21581Y
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 649030
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101001470
Organisme : Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
ID : CZ.02.01.01/00/22_008/0004575
Organisme : Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
ID : LX22NPO5103
Organisme : Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
ID : LM2023042
Informations de copyright
© 2024. The Author(s).
Références
Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 1863–1876 (2001).
pubmed: 11313498
doi: 10.1126/science.1059493
Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017).
pubmed: 28248323
doi: 10.1038/nrm.2017.10
Yang, C. & Stiller, J. W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc. Natl Acad. Sci. USA 111, 5920–5925 (2014).
pubmed: 24711388
pmcid: 4000794
doi: 10.1073/pnas.1323616111
Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).
pubmed: 23952966
doi: 10.1021/cr400071f
Buratowski, S. The CTD code. Nat. Struct. Mol. Biol. 10, 679–680 (2003).
doi: 10.1038/nsb0903-679
Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).
pubmed: 19941815
pmcid: 3232742
doi: 10.1016/j.molcel.2009.10.019
Jasnovidova, O. & Stefl, R. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip. Rev. RNA 4, 1–16 (2013).
pubmed: 23042580
doi: 10.1002/wrna.1138
Jeronimo, C., Bataille, A. R. & Robert, F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem. Rev. 113, 8491–8522 (2013).
pubmed: 23837720
doi: 10.1021/cr4001397
Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).
pubmed: 18457900
doi: 10.1016/j.tig.2008.03.008
Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. & Cramer, P. A structural perspective of CTD function. Genes Dev. 19, 1401–1415 (2005).
pubmed: 15964991
doi: 10.1101/gad.1318105
Jasnovidova, O., Krejcikova, M., Kubicek, K. & Stefl, R. Structural insight into recognition of phosphorylated threonine‐4 of RNA polymerase II C‐terminal domain by Rtt103p. EMBO Rep. 18, 906–913 (2017).
pubmed: 28468956
pmcid: 5452035
doi: 10.15252/embr.201643723
Jasnovidova, O. et al. Structure and dynamics of the RNAPII CTDsome with Rtt103. Proc. Natl Acad. Sci. USA 114, 11133–11138 (2017).
pubmed: 29073019
pmcid: 5651779
doi: 10.1073/pnas.1712450114
Kubicek, K. et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 26, 1891–1896 (2012).
pubmed: 22892239
pmcid: 3435493
doi: 10.1101/gad.192781.112
Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012).
pubmed: 22745433
doi: 10.1126/science.1219651
Cho, E.-J., Kobor, M. S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).
pubmed: 11751637
pmcid: 312848
doi: 10.1101/gad.935901
McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).
pubmed: 9002523
doi: 10.1038/385357a0
Komarnitsky, P., Cho, E.-J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).
pubmed: 11018013
pmcid: 316976
doi: 10.1101/gad.824700
Ho, C. K. & Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3, 405–411 (1999).
pubmed: 10198643
doi: 10.1016/S1097-2765(00)80468-2
Cho, E.-J., Takagi, T., Moore, C. R. & Buratowski, S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11, 3319–3326 (1997).
pubmed: 9407025
pmcid: 316800
doi: 10.1101/gad.11.24.3319
Descostes, N. et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. Elife 3, 1–19 (2014).
doi: 10.7554/eLife.02105
Brandts, J. F., Halvorson, H. R. & Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14, 4953–4963 (1975).
pubmed: 241393
doi: 10.1021/bi00693a026
Werner-Allen, J. W. et al. cis-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem. 286, 5717 (2011).
pubmed: 21159777
doi: 10.1074/jbc.M110.197129
Xiang, K. et al. Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. Nature 467, 729–733 (2010).
pubmed: 20861839
pmcid: 3038789
doi: 10.1038/nature09391
Schutkowski, M. et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 37, 5566–5575 (1998).
pubmed: 9548941
doi: 10.1021/bi973060z
Goethel, S. F. & Marahiel, M. A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol. Life Sci. 55, 423–436 (1999).
doi: 10.1007/s000180050299
Schmid, F. X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev. Biophys. Biomol. Struct. 22, 123–142 (1993).
pubmed: 7688608
doi: 10.1146/annurev.bb.22.060193.001011
Favretto, F. et al. Catalysis of proline isomerization and molecular chaperone activity in a tug-of-war. Nat. Commun. 11, 6046 (2020).
pubmed: 33247146
pmcid: 7695863
doi: 10.1038/s41467-020-19844-0
Zhang, M. et al. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. ACS Chem. Biol. 7, 1462–1470 (2012).
pubmed: 22670809
pmcid: 3423551
doi: 10.1021/cb3000887
Hanes, S. D. Prolyl isomerases in gene transcription. Biochim. Biophys. Acta 1850, 2017–2034 (2015).
pubmed: 25450176
doi: 10.1016/j.bbagen.2014.10.028
Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis-trans isomerization as a molecular timer. Nat. Chem. Biol. 3, 619–629 (2007).
pubmed: 17876319
doi: 10.1038/nchembio.2007.35
Bataille, A. R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012).
pubmed: 22284676
doi: 10.1016/j.molcel.2011.11.024
Andreotti, A. H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42, 9515–9524 (2003).
pubmed: 12911293
doi: 10.1021/bi0350710
Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).
pubmed: 30127355
doi: 10.1038/s41594-018-0112-y
Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).
pubmed: 31462772
doi: 10.1038/s41586-019-1517-4
Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
pubmed: 29930094
pmcid: 6543815
doi: 10.1126/science.aar4199
Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).
pubmed: 29930091
pmcid: 6092193
doi: 10.1126/science.aar3958
Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).
pubmed: 24267890
pmcid: 4010232
doi: 10.1016/j.cell.2013.10.033
Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).
pubmed: 31391587
pmcid: 6706314
doi: 10.1038/s41586-019-1464-0
Alberti, S. Phase separation in biology. Curr. Biol. 27, R1097–R1102 (2017).
pubmed: 29065286
doi: 10.1016/j.cub.2017.08.069
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).
pubmed: 32029630
pmcid: 7297187
doi: 10.1126/science.aaw8653
Ginell, G. M. & Holehouse, A. S. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. In: Phase-Separated Biomolecular Condensates. Methods in Molecular Biology (eds Zhou, H. X., Spille, J. H., Banerjee, P. R.). Humana, New York, 2563, 95–116 (2023).
Rubinstein, M. & Dobrynin, A. V. Solutions of associative polymers. Trends Polym. Sci. 5, 181–186 (1997).
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
pubmed: 29961577
pmcid: 6063760
doi: 10.1016/j.cell.2018.06.006
Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife 6, 1–37 (2017).
doi: 10.7554/eLife.30294
Rekhi, S. et al. Expanding the molecular language of protein liquid-liquid phase separation. Nat. Chem. 16, 1113–1124 (2024).
pubmed: 38553587
doi: 10.1038/s41557-024-01489-x
Levitt, M. Conformational preferences of amino acids in globular proteins. Biochemistry 17, 4277–4285 (1978).
pubmed: 708713
doi: 10.1021/bi00613a026
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Gallardo, R., Ranson, N. A. & Radford, S. E. Amyloid structures: much more than just a cross-β fold. Curr. Opin. Struct. Biol. 60, 7–16 (2020).
pubmed: 31683043
doi: 10.1016/j.sbi.2019.09.001
Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778 (2005).
pubmed: 15944695
pmcid: 1479801
doi: 10.1038/nature03680
Eberhardt, E. S., Panasik, N. & Raines, R. T. Inductive effects on the energetics of prolyl peptide bond isomerization: implications for collagen folding and stability. J. Am. Chem. Soc. 118, 12261–12266 (1996).
pubmed: 21451735
pmcid: 3065073
doi: 10.1021/ja9623119
Panasik, N., Eberhardt, E. S., Edison, A. S., Powel, D. R. & Raines, R. T. Inductive effects on the structure of proline residues. Int J. Pept. Protein Res 44, 262–269 (2009).
doi: 10.1111/j.1399-3011.1994.tb00169.x
Holmgren, S. K., Taylor, K. M., Bretscher, L. E. & Raines, R. T. Code for collagen’s stability deciphered. Nature 392, 666–667 (1998).
pubmed: 9565027
doi: 10.1038/33573
Buechter, D. D. et al. Co-translational Incorporation of Trans-4-Hydroxyproline into Recombinant Proteins in Bacteria. J. Biol. Chem. 278, 645–650 (2003).
pubmed: 12399455
doi: 10.1074/jbc.M209364200
Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999).
Wang, P. & Heitman, J. The cyclophilins. Genome Biol. 6, 226 (2005).
pubmed: 15998457
pmcid: 1175980
doi: 10.1186/gb-2005-6-7-226
Song, F. et al. Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity. J. Biol. Chem. 286, 8197–8203 (2011).
pubmed: 21245143
pmcid: 3048706
doi: 10.1074/jbc.C110.181347
Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 7, 639–643 (2000).
pubmed: 10932246
doi: 10.1038/77929
Wang, J. et al. Allosteric breakage of the hydrogen bond within the dual-histidine motif in the active site of human Pin1 PPIase. Biochemistry 54, 5242–5253 (2015).
pubmed: 26226559
doi: 10.1021/acs.biochem.5b00606
Behrsin, C. D. et al. Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. J. Mol. Biol. 365, 1143–1162 (2007).
pubmed: 17113106
doi: 10.1016/j.jmb.2006.10.078
Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. Mol. Cell 6, 873–883 (2000).
pubmed: 11090625
doi: 10.1016/S1097-2765(05)00083-3
Song, B., Bomar, M. G., Kibler, P., Kodukula, K. & Galande, A. K. The serine-proline turn: a novel hydrogen-bonded template for designing peptidomimetics. Org. Lett. 14, 732–735 (2012).
pubmed: 22257322
doi: 10.1021/ol203272k
Trevino, S. R., Schaefer, S., Scholtz, J. M. & Pace, C. N. Increasing protein conformational stability by optimizing β-turn sequence. J. Mol. Biol. 373, 211–218 (2007).
pubmed: 17765922
pmcid: 2084202
doi: 10.1016/j.jmb.2007.07.061
Düster, R. et al. Structural basis of Cdk7 activation by dual T-loop phosphorylation. Nat. Commun. 15, 1–15 (2024).
doi: 10.1038/s41467-024-50891-z
Bao, Z. Q., Jacobsen, D. M. & Young, M. A. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19, 675–690 (2011).
pubmed: 21565702
pmcid: 3462661
doi: 10.1016/j.str.2011.02.016
Kato, M. & McKnight, S. L. A solid-state conceptualization of information transfer from gene to message to protein. Annu Rev. Biochem 87, 351–390 (2018).
pubmed: 29195049
doi: 10.1146/annurev-biochem-061516-044700
Akhtar, M. S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009).
pubmed: 19450536
pmcid: 2757088
doi: 10.1016/j.molcel.2009.04.016
Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).
pubmed: 34035521
pmcid: 8635274
doi: 10.1038/s41589-021-00801-x
Mikhaleva, S. & Lemke, E. A. Beyond the transport function of import receptors: what’s All the FUS about? Cell 173, 549–553 (2018).
pubmed: 29677508
pmcid: 7611746
doi: 10.1016/j.cell.2018.04.002
O’Flynn, B. G. & Mittag, T. The role of liquid–liquid phase separation in regulating enzyme activity. Curr. Opin. Cell Biol. 69, 70–79 (2021).
pubmed: 33503539
doi: 10.1016/j.ceb.2020.12.012
López-Palacios, T. P. & Andersen, J. L. Kinase regulation by liquid–liquid phase separation. Trends Cell Biol. 33, 649–666 (2023).
pubmed: 36528418
doi: 10.1016/j.tcb.2022.11.009
Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).
pubmed: 22579282
doi: 10.1016/j.cell.2012.04.016
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081
pmcid: 7434221
doi: 10.1038/nrm.2017.7
Theillet, F.-X. et al. The alphabet of intrinsic disorder. Intrinsically Disord. Proteins 1, e24360 (2013).
pubmed: 28516008
pmcid: 5424786
doi: 10.4161/idp.24360
Semenov, A. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics Macromol. 31, 1373–1385 (1998).
doi: 10.1021/ma970616h
Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 292, 19110–19120 (2017).
pubmed: 28924037
pmcid: 5704491
doi: 10.1074/jbc.M117.800466
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).
pubmed: 17082456
doi: 10.1126/science.1132516
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu Rev. Phys. Chem. 71, 53–75 (2020).
pubmed: 32312191
pmcid: 7469089
doi: 10.1146/annurev-physchem-071819-113553
Flores-Solis, D. et al. Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II. Nat. Commun. 14, 5979 (2023).
pubmed: 37749095
pmcid: 10519987
doi: 10.1038/s41467-023-41633-8
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).
pubmed: 34931046
doi: 10.1038/s41557-021-00840-w
An, Y., Bloom, J. W. G. & Wheeler, S. E. Quantifying the π-stacking interactions in nitroarene binding sites of proteins. J. Phys. Chem. B 119, 14441–14450 (2015).
pubmed: 26491883
doi: 10.1021/acs.jpcb.5b08126
Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput Sci. 1, 732–743 (2021).
pubmed: 35795820
pmcid: 7612994
doi: 10.1038/s43588-021-00155-3
Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).
pubmed: 32393642
pmcid: 7261017
doi: 10.1073/pnas.2000223117
Rana, U. et al. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. Nat. Chem. 16, 1073–1082 (2024).
pubmed: 38383656
pmcid: 11230906
doi: 10.1038/s41557-024-01456-6
Welles, R. M. et al. Determinants that enable disordered protein assembly into discrete condensed phases. Nat. Chem. 16, 1062–1072 (2024).
pubmed: 38316988
doi: 10.1038/s41557-023-01423-7
Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 18, 382–388 (2021).
pubmed: 33782607
doi: 10.1038/s41592-021-01098-3
Thomasen, F. E. et al. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution. Nat. Commun. 15, 6645 (2024).
pubmed: 39103332
pmcid: 11300910
doi: 10.1038/s41467-024-50647-9
Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G. & Lindorff-Larsen, K. Improving Martini 3 for disordered and multidomain proteins. J. Chem. Theory Comput. 18, 2033–2041 (2022).
pubmed: 35377637
doi: 10.1021/acs.jctc.1c01042
Zerze, G. H. Optimizing the Martini 3 force field reveals the effects of the intricate balance between protein–water interaction strength and salt concentration on biomolecular condensate formation. J. Chem. Theory Comput. 20, 1646–1655 (2024).
pubmed: 37043540
doi: 10.1021/acs.jctc.2c01273
van Teijlingen, A., Smith, M. C. & Tuttle, T. Short peptide self-assembly in the martini coarse-grain force field family. Acc. Chem. Res 56, 644–654 (2023).
pubmed: 36866851
pmcid: 10035038
doi: 10.1021/acs.accounts.2c00810
Sasselli, I. R. & Coluzza, I. Assessment of the MARTINI 3 performance for short peptide self-assembly. J. Chem. Theory Comput 20, 224–238 (2024).
pubmed: 38113378
doi: 10.1021/acs.jctc.3c01015
Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse‐grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci. 30, 1371–1379 (2021).
pubmed: 33934416
pmcid: 8197430
doi: 10.1002/pro.4094
Tesei, G. & Lindorff-Larsen, K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. Open Res. Eur. 2, 94 (2023).
pubmed: 37645312
pmcid: 10450847
doi: 10.12688/openreseurope.14967.2
Murray, K. A. et al. Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. Nat. Struct. Mol. Biol. 29, 529–536 (2022).
pubmed: 35637421
pmcid: 9205782
doi: 10.1038/s41594-022-00774-y
Ridgway, Z. et al. Analysis of proline substitutions reveals the plasticity and sequence sensitivity of human IAPP amyloidogenicity and toxicity. Biochemistry 59, 742–754 (2020).
pubmed: 31922743
doi: 10.1021/acs.biochem.9b01109
Theillet, F.-X. et al. The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins 1, e24360 (2013).
pubmed: 28516008
pmcid: 5424786
doi: 10.4161/idp.24360
Rousseau, F., Serrano, L. & Schymkowitz, J. W. H. How evolutionary pressure against protein aggregation shaped chaperone specificity. J. Mol. Biol. 355, 1037–1047 (2006).
pubmed: 16359707
doi: 10.1016/j.jmb.2005.11.035
Zhao, G. et al. Peptidyl-prolyl isomerase Cyclophilin71 promotes SERRATE phase separation and miRNA processing in Arabidopsis. Proc. Natl Acad. Sci. USA 120, e2305244120 (2023).
Babu, M., Favretto, F., Rankovic, M. & Zweckstetter, M. Peptidyl prolyl isomerase A modulates the liquid–liquid phase separation of proline-Rich IDPs. J. Am. Chem. Soc. 144, 16157–16163 (2022).
pubmed: 36018855
pmcid: 9460772
doi: 10.1021/jacs.2c07149
Eichner, T., Kutter, S., Labeikovsky, W., Buosi, V. & Kern, D. Molecular mechanism of Pin1-Tau recognition and catalysis. J. Mol. Biol. 428, 1760–1775 (2016).
pubmed: 26996941
doi: 10.1016/j.jmb.2016.03.009
Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).
pubmed: 29849146
pmcid: 6475116
doi: 10.1038/s41586-018-0174-3
Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013).
pubmed: 24040939
pmcid: 3988834
doi: 10.1021/cr400158h
Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).
pubmed: 15896740
doi: 10.1016/j.tibs.2005.03.011
Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).
pubmed: 25693130
pmcid: 4782187
doi: 10.1038/nrm3953
Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).
pubmed: 31123063
pmcid: 6672056
doi: 10.1101/gad.325142.119
Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu Rev. Genet. 47, 483–508 (2013).
pubmed: 24050178
pmcid: 3974797
doi: 10.1146/annurev-genet-110711-155440
Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu Rev. Biochem. 81, 119–143 (2012).
pubmed: 22404626
pmcid: 4273853
doi: 10.1146/annurev-biochem-052610-095910
Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol. 434, 167216 (2022).
pubmed: 34474085
doi: 10.1016/j.jmb.2021.167216
Stortz, M., Presman, D. M. & Levi, V. Transcriptional condensates: a blessing or a curse for gene regulation? Commun. Biol. 7, 187 (2024).
pubmed: 38365945
pmcid: 10873363
doi: 10.1038/s42003-024-05892-5
Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. J. The mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 23, 732–749 (2022).
pubmed: 35725906
pmcid: 9207880
doi: 10.1038/s41580-022-00498-3
Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32, 1011–1018 (2014).
pubmed: 25262299
pmcid: 4666537
doi: 10.1038/nbt.3018
Sang, D. et al. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol. Cell 82, 3693–3711.e10 (2022).
pubmed: 36108633
pmcid: 10101210
doi: 10.1016/j.molcel.2022.08.016
Gradia, S. D. et al. MacroBac: new technologies for robust and efficient large-scale production of recombinant multi-protein complexes. Methods Enzymol. 592, 1 (2017).
pubmed: 28668116
pmcid: 6028233
doi: 10.1016/bs.mie.2017.03.008
Shis, D. L. & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc. Natl Acad. Sci. USA 110, 5028–5033 (2013).
pubmed: 23479654
pmcid: 3612686
doi: 10.1073/pnas.1220157110
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038
Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler
pubmed: 17269487
doi: 10.2144/000112257
Otsu, N. A. Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9, 62–66.
R Core Team (2021): A language and environment for statistical computing. Vienna, Austria. https://posit.co/ .
Team, Rs. RStudio: Integrated Development Environment for R (2022). https://posit.co/ .
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
doi: 10.21105/joss.01686
Wickham, H. ggplot2, Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016)
Clarke, E., Sherrill-Mix, S. & Dawson, C. Package ‘ggbeeswarm (2017). https://CRAN.R-project.org/package=ggbeeswarm .
Wilke, C. O. Tools for visualizing uncertainty with ggplot2 (2021). https://github.com/wilkelab/ungeviz .
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/ .
Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35 (1947).
pubmed: 20287819
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Linhartova, K. & Falginella, F. L. Raw data and MD simulations files for the paper: “Sequence and Structural Determinants of RNAPII CTD Phase-separation and Phosphorylation by CDK7”. https://doi.org/10.5281/zenodo.10696484 (2024).
Zeiss Microscopy GmbH, C. Super-Resolution Imaging by Dual Iterative Structured Illumination Microscopy Classic SIM SIM
The PyMOL Molecular Graphics System. Version 2.0. Schrödinger, LLC.
Case, D. A. et al. AmberTools. J. Chem. Inf. Model 63, 6183–6191 (2023).
pubmed: 37805934
pmcid: 10598796
doi: 10.1021/acs.jcim.3c01153
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).
doi: 10.1016/j.cpc.2013.09.018
Kroon, P. C. et al. Martinize2 and Vermouth: unified framework for topology generation. Elife 12, 1–7 (2023).
Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 115, 9929–9934 (2018).
pubmed: 30217894
pmcid: 6176625
doi: 10.1073/pnas.1804177115
de Jong, D. H., Baoukina, S., Ingólfsson, H. I. & Marrink, S. J. Martini straight: boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 199, 1–7 (2016).
doi: 10.1016/j.cpc.2015.09.014
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
doi: 10.1063/1.448118
Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15, 2620–2634 (2019).
pubmed: 30865832
doi: 10.1021/acs.jctc.8b01123
Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct., Bioinforma. 65, 712–725 (2006).
doi: 10.1002/prot.21123
Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863–3871 (2014).
pubmed: 25400877
pmcid: 4226301
doi: 10.1021/jz501780a
Homeyer, N., Horn, A. H. C., Lanig, H. & Sticht, H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model 12, 281–289 (2006).
pubmed: 16240095
doi: 10.1007/s00894-005-0028-4
Park, S., Radmer, R. J., Klein, T. E. & Pande, V. S. A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen‐like peptides. J. Comput Chem. 26, 1612–1616 (2005).
pubmed: 16170799
doi: 10.1002/jcc.20301
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
doi: 10.1063/1.328693
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
doi: 10.1063/1.464397
Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).
pubmed: 26619985
doi: 10.1021/ct700200b
Michaud‐Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput Chem. 32, 2319–2327 (2011).
pubmed: 21500218
pmcid: 3144279
doi: 10.1002/jcc.21787
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33–38 (1996).
pubmed: 8744570
doi: 10.1016/0263-7855(96)00018-5
Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 8183–8188 (2010).
pubmed: 20404210
pmcid: 2889596
doi: 10.1073/pnas.0911107107
Flory, P. J. The configuration of real polymer chains. J. Chem. Phys. 17, 303–310 (1949).
doi: 10.1063/1.1747243
Dima, R. I. & Thirumalai, D. Asymmetry in the shapes of folded and denatured states of proteins. J. Phys. Chem. B 108, 6564–6570 (2004).
doi: 10.1021/jp037128y
Shapovalov, M., Vucetic, S. & Dunbrack, R. L. A new clustering and nomenclature for beta turns derived from high-resolution protein structures. PLoS Comput. Biol. 15, e1006844 (2019).
pubmed: 30845191
pmcid: 6424458
doi: 10.1371/journal.pcbi.1006844
Smith, P., Ziolek, R. M., Gazzarrini, E., Owen, D. M. & Lorenz, C. D. On the interaction of hyaluronic acid with synovial fluid lipid membranes. Phys. Chem. Chem. Phys. 21, 9845–9857 (2019).
pubmed: 31032510
doi: 10.1039/C9CP01532A