Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Oct 2024
Historique:
received: 05 03 2024
accepted: 09 10 2024
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.

Identifiants

pubmed: 39448580
doi: 10.1038/s41467-024-53305-2
pii: 10.1038/s41467-024-53305-2
doi:

Substances chimiques

RNA Polymerase II EC 2.7.7.-
Cyclin-Dependent Kinases EC 2.7.11.22
Cyclin-Dependent Kinase-Activating Kinase EC 2.7.11.22
CDK7 protein, human 0
Tyrosine 42HK56048U
Proline 9DLQ4CIU6V

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9163

Subventions

Organisme : Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
ID : 21-24460S
Organisme : Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
ID : 20-21581Y
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 649030
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101001470
Organisme : Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
ID : CZ.02.01.01/00/22_008/0004575
Organisme : Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
ID : LX22NPO5103
Organisme : Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
ID : LM2023042

Informations de copyright

© 2024. The Author(s).

Références

Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 1863–1876 (2001).
pubmed: 11313498 doi: 10.1126/science.1059493
Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017).
pubmed: 28248323 doi: 10.1038/nrm.2017.10
Yang, C. & Stiller, J. W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc. Natl Acad. Sci. USA 111, 5920–5925 (2014).
pubmed: 24711388 pmcid: 4000794 doi: 10.1073/pnas.1323616111
Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).
pubmed: 23952966 doi: 10.1021/cr400071f
Buratowski, S. The CTD code. Nat. Struct. Mol. Biol. 10, 679–680 (2003).
doi: 10.1038/nsb0903-679
Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).
pubmed: 19941815 pmcid: 3232742 doi: 10.1016/j.molcel.2009.10.019
Jasnovidova, O. & Stefl, R. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip. Rev. RNA 4, 1–16 (2013).
pubmed: 23042580 doi: 10.1002/wrna.1138
Jeronimo, C., Bataille, A. R. & Robert, F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem. Rev. 113, 8491–8522 (2013).
pubmed: 23837720 doi: 10.1021/cr4001397
Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).
pubmed: 18457900 doi: 10.1016/j.tig.2008.03.008
Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. & Cramer, P. A structural perspective of CTD function. Genes Dev. 19, 1401–1415 (2005).
pubmed: 15964991 doi: 10.1101/gad.1318105
Jasnovidova, O., Krejcikova, M., Kubicek, K. & Stefl, R. Structural insight into recognition of phosphorylated threonine‐4 of RNA polymerase II C‐terminal domain by Rtt103p. EMBO Rep. 18, 906–913 (2017).
pubmed: 28468956 pmcid: 5452035 doi: 10.15252/embr.201643723
Jasnovidova, O. et al. Structure and dynamics of the RNAPII CTDsome with Rtt103. Proc. Natl Acad. Sci. USA 114, 11133–11138 (2017).
pubmed: 29073019 pmcid: 5651779 doi: 10.1073/pnas.1712450114
Kubicek, K. et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 26, 1891–1896 (2012).
pubmed: 22892239 pmcid: 3435493 doi: 10.1101/gad.192781.112
Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012).
pubmed: 22745433 doi: 10.1126/science.1219651
Cho, E.-J., Kobor, M. S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).
pubmed: 11751637 pmcid: 312848 doi: 10.1101/gad.935901
McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).
pubmed: 9002523 doi: 10.1038/385357a0
Komarnitsky, P., Cho, E.-J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).
pubmed: 11018013 pmcid: 316976 doi: 10.1101/gad.824700
Ho, C. K. & Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3, 405–411 (1999).
pubmed: 10198643 doi: 10.1016/S1097-2765(00)80468-2
Cho, E.-J., Takagi, T., Moore, C. R. & Buratowski, S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11, 3319–3326 (1997).
pubmed: 9407025 pmcid: 316800 doi: 10.1101/gad.11.24.3319
Descostes, N. et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. Elife 3, 1–19 (2014).
doi: 10.7554/eLife.02105
Brandts, J. F., Halvorson, H. R. & Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14, 4953–4963 (1975).
pubmed: 241393 doi: 10.1021/bi00693a026
Werner-Allen, J. W. et al. cis-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem. 286, 5717 (2011).
pubmed: 21159777 doi: 10.1074/jbc.M110.197129
Xiang, K. et al. Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. Nature 467, 729–733 (2010).
pubmed: 20861839 pmcid: 3038789 doi: 10.1038/nature09391
Schutkowski, M. et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 37, 5566–5575 (1998).
pubmed: 9548941 doi: 10.1021/bi973060z
Goethel, S. F. & Marahiel, M. A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol. Life Sci. 55, 423–436 (1999).
doi: 10.1007/s000180050299
Schmid, F. X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev. Biophys. Biomol. Struct. 22, 123–142 (1993).
pubmed: 7688608 doi: 10.1146/annurev.bb.22.060193.001011
Favretto, F. et al. Catalysis of proline isomerization and molecular chaperone activity in a tug-of-war. Nat. Commun. 11, 6046 (2020).
pubmed: 33247146 pmcid: 7695863 doi: 10.1038/s41467-020-19844-0
Zhang, M. et al. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. ACS Chem. Biol. 7, 1462–1470 (2012).
pubmed: 22670809 pmcid: 3423551 doi: 10.1021/cb3000887
Hanes, S. D. Prolyl isomerases in gene transcription. Biochim. Biophys. Acta 1850, 2017–2034 (2015).
pubmed: 25450176 doi: 10.1016/j.bbagen.2014.10.028
Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis-trans isomerization as a molecular timer. Nat. Chem. Biol. 3, 619–629 (2007).
pubmed: 17876319 doi: 10.1038/nchembio.2007.35
Bataille, A. R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012).
pubmed: 22284676 doi: 10.1016/j.molcel.2011.11.024
Andreotti, A. H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42, 9515–9524 (2003).
pubmed: 12911293 doi: 10.1021/bi0350710
Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).
pubmed: 30127355 doi: 10.1038/s41594-018-0112-y
Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).
pubmed: 31462772 doi: 10.1038/s41586-019-1517-4
Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
pubmed: 29930094 pmcid: 6543815 doi: 10.1126/science.aar4199
Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).
pubmed: 29930091 pmcid: 6092193 doi: 10.1126/science.aar3958
Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).
pubmed: 24267890 pmcid: 4010232 doi: 10.1016/j.cell.2013.10.033
Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).
pubmed: 31391587 pmcid: 6706314 doi: 10.1038/s41586-019-1464-0
Alberti, S. Phase separation in biology. Curr. Biol. 27, R1097–R1102 (2017).
pubmed: 29065286 doi: 10.1016/j.cub.2017.08.069
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).
pubmed: 32029630 pmcid: 7297187 doi: 10.1126/science.aaw8653
Ginell, G. M. & Holehouse, A. S. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. In: Phase-Separated Biomolecular Condensates. Methods in Molecular Biology (eds Zhou, H. X., Spille, J. H., Banerjee, P. R.). Humana, New York, 2563, 95–116 (2023).
Rubinstein, M. & Dobrynin, A. V. Solutions of associative polymers. Trends Polym. Sci. 5, 181–186 (1997).
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
pubmed: 29961577 pmcid: 6063760 doi: 10.1016/j.cell.2018.06.006
Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife 6, 1–37 (2017).
doi: 10.7554/eLife.30294
Rekhi, S. et al. Expanding the molecular language of protein liquid-liquid phase separation. Nat. Chem. 16, 1113–1124 (2024).
pubmed: 38553587 doi: 10.1038/s41557-024-01489-x
Levitt, M. Conformational preferences of amino acids in globular proteins. Biochemistry 17, 4277–4285 (1978).
pubmed: 708713 doi: 10.1021/bi00613a026
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Gallardo, R., Ranson, N. A. & Radford, S. E. Amyloid structures: much more than just a cross-β fold. Curr. Opin. Struct. Biol. 60, 7–16 (2020).
pubmed: 31683043 doi: 10.1016/j.sbi.2019.09.001
Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778 (2005).
pubmed: 15944695 pmcid: 1479801 doi: 10.1038/nature03680
Eberhardt, E. S., Panasik, N. & Raines, R. T. Inductive effects on the energetics of prolyl peptide bond isomerization: implications for collagen folding and stability. J. Am. Chem. Soc. 118, 12261–12266 (1996).
pubmed: 21451735 pmcid: 3065073 doi: 10.1021/ja9623119
Panasik, N., Eberhardt, E. S., Edison, A. S., Powel, D. R. & Raines, R. T. Inductive effects on the structure of proline residues. Int J. Pept. Protein Res 44, 262–269 (2009).
doi: 10.1111/j.1399-3011.1994.tb00169.x
Holmgren, S. K., Taylor, K. M., Bretscher, L. E. & Raines, R. T. Code for collagen’s stability deciphered. Nature 392, 666–667 (1998).
pubmed: 9565027 doi: 10.1038/33573
Buechter, D. D. et al. Co-translational Incorporation of Trans-4-Hydroxyproline into Recombinant Proteins in Bacteria. J. Biol. Chem. 278, 645–650 (2003).
pubmed: 12399455 doi: 10.1074/jbc.M209364200
Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999).
Wang, P. & Heitman, J. The cyclophilins. Genome Biol. 6, 226 (2005).
pubmed: 15998457 pmcid: 1175980 doi: 10.1186/gb-2005-6-7-226
Song, F. et al. Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity. J. Biol. Chem. 286, 8197–8203 (2011).
pubmed: 21245143 pmcid: 3048706 doi: 10.1074/jbc.C110.181347
Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 7, 639–643 (2000).
pubmed: 10932246 doi: 10.1038/77929
Wang, J. et al. Allosteric breakage of the hydrogen bond within the dual-histidine motif in the active site of human Pin1 PPIase. Biochemistry 54, 5242–5253 (2015).
pubmed: 26226559 doi: 10.1021/acs.biochem.5b00606
Behrsin, C. D. et al. Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. J. Mol. Biol. 365, 1143–1162 (2007).
pubmed: 17113106 doi: 10.1016/j.jmb.2006.10.078
Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. Mol. Cell 6, 873–883 (2000).
pubmed: 11090625 doi: 10.1016/S1097-2765(05)00083-3
Song, B., Bomar, M. G., Kibler, P., Kodukula, K. & Galande, A. K. The serine-proline turn: a novel hydrogen-bonded template for designing peptidomimetics. Org. Lett. 14, 732–735 (2012).
pubmed: 22257322 doi: 10.1021/ol203272k
Trevino, S. R., Schaefer, S., Scholtz, J. M. & Pace, C. N. Increasing protein conformational stability by optimizing β-turn sequence. J. Mol. Biol. 373, 211–218 (2007).
pubmed: 17765922 pmcid: 2084202 doi: 10.1016/j.jmb.2007.07.061
Düster, R. et al. Structural basis of Cdk7 activation by dual T-loop phosphorylation. Nat. Commun. 15, 1–15 (2024).
doi: 10.1038/s41467-024-50891-z
Bao, Z. Q., Jacobsen, D. M. & Young, M. A. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19, 675–690 (2011).
pubmed: 21565702 pmcid: 3462661 doi: 10.1016/j.str.2011.02.016
Kato, M. & McKnight, S. L. A solid-state conceptualization of information transfer from gene to message to protein. Annu Rev. Biochem 87, 351–390 (2018).
pubmed: 29195049 doi: 10.1146/annurev-biochem-061516-044700
Akhtar, M. S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009).
pubmed: 19450536 pmcid: 2757088 doi: 10.1016/j.molcel.2009.04.016
Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).
pubmed: 34035521 pmcid: 8635274 doi: 10.1038/s41589-021-00801-x
Mikhaleva, S. & Lemke, E. A. Beyond the transport function of import receptors: what’s All the FUS about? Cell 173, 549–553 (2018).
pubmed: 29677508 pmcid: 7611746 doi: 10.1016/j.cell.2018.04.002
O’Flynn, B. G. & Mittag, T. The role of liquid–liquid phase separation in regulating enzyme activity. Curr. Opin. Cell Biol. 69, 70–79 (2021).
pubmed: 33503539 doi: 10.1016/j.ceb.2020.12.012
López-Palacios, T. P. & Andersen, J. L. Kinase regulation by liquid–liquid phase separation. Trends Cell Biol. 33, 649–666 (2023).
pubmed: 36528418 doi: 10.1016/j.tcb.2022.11.009
Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).
pubmed: 22579282 doi: 10.1016/j.cell.2012.04.016
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081 pmcid: 7434221 doi: 10.1038/nrm.2017.7
Theillet, F.-X. et al. The alphabet of intrinsic disorder. Intrinsically Disord. Proteins 1, e24360 (2013).
pubmed: 28516008 pmcid: 5424786 doi: 10.4161/idp.24360
Semenov, A. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics Macromol. 31, 1373–1385 (1998).
doi: 10.1021/ma970616h
Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 292, 19110–19120 (2017).
pubmed: 28924037 pmcid: 5704491 doi: 10.1074/jbc.M117.800466
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).
pubmed: 17082456 doi: 10.1126/science.1132516
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu Rev. Phys. Chem. 71, 53–75 (2020).
pubmed: 32312191 pmcid: 7469089 doi: 10.1146/annurev-physchem-071819-113553
Flores-Solis, D. et al. Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II. Nat. Commun. 14, 5979 (2023).
pubmed: 37749095 pmcid: 10519987 doi: 10.1038/s41467-023-41633-8
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).
pubmed: 34931046 doi: 10.1038/s41557-021-00840-w
An, Y., Bloom, J. W. G. & Wheeler, S. E. Quantifying the π-stacking interactions in nitroarene binding sites of proteins. J. Phys. Chem. B 119, 14441–14450 (2015).
pubmed: 26491883 doi: 10.1021/acs.jpcb.5b08126
Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput Sci. 1, 732–743 (2021).
pubmed: 35795820 pmcid: 7612994 doi: 10.1038/s43588-021-00155-3
Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).
pubmed: 32393642 pmcid: 7261017 doi: 10.1073/pnas.2000223117
Rana, U. et al. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. Nat. Chem. 16, 1073–1082 (2024).
pubmed: 38383656 pmcid: 11230906 doi: 10.1038/s41557-024-01456-6
Welles, R. M. et al. Determinants that enable disordered protein assembly into discrete condensed phases. Nat. Chem. 16, 1062–1072 (2024).
pubmed: 38316988 doi: 10.1038/s41557-023-01423-7
Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 18, 382–388 (2021).
pubmed: 33782607 doi: 10.1038/s41592-021-01098-3
Thomasen, F. E. et al. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution. Nat. Commun. 15, 6645 (2024).
pubmed: 39103332 pmcid: 11300910 doi: 10.1038/s41467-024-50647-9
Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G. & Lindorff-Larsen, K. Improving Martini 3 for disordered and multidomain proteins. J. Chem. Theory Comput. 18, 2033–2041 (2022).
pubmed: 35377637 doi: 10.1021/acs.jctc.1c01042
Zerze, G. H. Optimizing the Martini 3 force field reveals the effects of the intricate balance between protein–water interaction strength and salt concentration on biomolecular condensate formation. J. Chem. Theory Comput. 20, 1646–1655 (2024).
pubmed: 37043540 doi: 10.1021/acs.jctc.2c01273
van Teijlingen, A., Smith, M. C. & Tuttle, T. Short peptide self-assembly in the martini coarse-grain force field family. Acc. Chem. Res 56, 644–654 (2023).
pubmed: 36866851 pmcid: 10035038 doi: 10.1021/acs.accounts.2c00810
Sasselli, I. R. & Coluzza, I. Assessment of the MARTINI 3 performance for short peptide self-assembly. J. Chem. Theory Comput 20, 224–238 (2024).
pubmed: 38113378 doi: 10.1021/acs.jctc.3c01015
Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse‐grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci. 30, 1371–1379 (2021).
pubmed: 33934416 pmcid: 8197430 doi: 10.1002/pro.4094
Tesei, G. & Lindorff-Larsen, K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. Open Res. Eur. 2, 94 (2023).
pubmed: 37645312 pmcid: 10450847 doi: 10.12688/openreseurope.14967.2
Murray, K. A. et al. Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. Nat. Struct. Mol. Biol. 29, 529–536 (2022).
pubmed: 35637421 pmcid: 9205782 doi: 10.1038/s41594-022-00774-y
Ridgway, Z. et al. Analysis of proline substitutions reveals the plasticity and sequence sensitivity of human IAPP amyloidogenicity and toxicity. Biochemistry 59, 742–754 (2020).
pubmed: 31922743 doi: 10.1021/acs.biochem.9b01109
Theillet, F.-X. et al. The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins 1, e24360 (2013).
pubmed: 28516008 pmcid: 5424786 doi: 10.4161/idp.24360
Rousseau, F., Serrano, L. & Schymkowitz, J. W. H. How evolutionary pressure against protein aggregation shaped chaperone specificity. J. Mol. Biol. 355, 1037–1047 (2006).
pubmed: 16359707 doi: 10.1016/j.jmb.2005.11.035
Zhao, G. et al. Peptidyl-prolyl isomerase Cyclophilin71 promotes SERRATE phase separation and miRNA processing in Arabidopsis. Proc. Natl Acad. Sci. USA 120, e2305244120 (2023).
Babu, M., Favretto, F., Rankovic, M. & Zweckstetter, M. Peptidyl prolyl isomerase A modulates the liquid–liquid phase separation of proline-Rich IDPs. J. Am. Chem. Soc. 144, 16157–16163 (2022).
pubmed: 36018855 pmcid: 9460772 doi: 10.1021/jacs.2c07149
Eichner, T., Kutter, S., Labeikovsky, W., Buosi, V. & Kern, D. Molecular mechanism of Pin1-Tau recognition and catalysis. J. Mol. Biol. 428, 1760–1775 (2016).
pubmed: 26996941 doi: 10.1016/j.jmb.2016.03.009
Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).
pubmed: 29849146 pmcid: 6475116 doi: 10.1038/s41586-018-0174-3
Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013).
pubmed: 24040939 pmcid: 3988834 doi: 10.1021/cr400158h
Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).
pubmed: 15896740 doi: 10.1016/j.tibs.2005.03.011
Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).
pubmed: 25693130 pmcid: 4782187 doi: 10.1038/nrm3953
Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).
pubmed: 31123063 pmcid: 6672056 doi: 10.1101/gad.325142.119
Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu Rev. Genet. 47, 483–508 (2013).
pubmed: 24050178 pmcid: 3974797 doi: 10.1146/annurev-genet-110711-155440
Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu Rev. Biochem. 81, 119–143 (2012).
pubmed: 22404626 pmcid: 4273853 doi: 10.1146/annurev-biochem-052610-095910
Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol. 434, 167216 (2022).
pubmed: 34474085 doi: 10.1016/j.jmb.2021.167216
Stortz, M., Presman, D. M. & Levi, V. Transcriptional condensates: a blessing or a curse for gene regulation? Commun. Biol. 7, 187 (2024).
pubmed: 38365945 pmcid: 10873363 doi: 10.1038/s42003-024-05892-5
Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. J. The mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 23, 732–749 (2022).
pubmed: 35725906 pmcid: 9207880 doi: 10.1038/s41580-022-00498-3
Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32, 1011–1018 (2014).
pubmed: 25262299 pmcid: 4666537 doi: 10.1038/nbt.3018
Sang, D. et al. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol. Cell 82, 3693–3711.e10 (2022).
pubmed: 36108633 pmcid: 10101210 doi: 10.1016/j.molcel.2022.08.016
Gradia, S. D. et al. MacroBac: new technologies for robust and efficient large-scale production of recombinant multi-protein complexes. Methods Enzymol. 592, 1 (2017).
pubmed: 28668116 pmcid: 6028233 doi: 10.1016/bs.mie.2017.03.008
Shis, D. L. & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc. Natl Acad. Sci. USA 110, 5028–5033 (2013).
pubmed: 23479654 pmcid: 3612686 doi: 10.1073/pnas.1220157110
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038
Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler
pubmed: 17269487 doi: 10.2144/000112257
Otsu, N. A. Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9, 62–66.
R Core Team (2021): A language and environment for statistical computing. Vienna, Austria. https://posit.co/ .
Team, Rs. RStudio: Integrated Development Environment for R (2022). https://posit.co/ .
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
doi: 10.21105/joss.01686
Wickham, H. ggplot2, Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016)
Clarke, E., Sherrill-Mix, S. & Dawson, C. Package ‘ggbeeswarm (2017). https://CRAN.R-project.org/package=ggbeeswarm .
Wilke, C. O. Tools for visualizing uncertainty with ggplot2 (2021). https://github.com/wilkelab/ungeviz .
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/ .
Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35 (1947).
pubmed: 20287819
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Linhartova, K. & Falginella, F. L. Raw data and MD simulations files for the paper: “Sequence and Structural Determinants of RNAPII CTD Phase-separation and Phosphorylation by CDK7”. https://doi.org/10.5281/zenodo.10696484 (2024).
Zeiss Microscopy GmbH, C. Super-Resolution Imaging by Dual Iterative Structured Illumination Microscopy Classic SIM SIM
The PyMOL Molecular Graphics System. Version 2.0. Schrödinger, LLC.
Case, D. A. et al. AmberTools. J. Chem. Inf. Model 63, 6183–6191 (2023).
pubmed: 37805934 pmcid: 10598796 doi: 10.1021/acs.jcim.3c01153
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).
doi: 10.1016/j.cpc.2013.09.018
Kroon, P. C. et al. Martinize2 and Vermouth: unified framework for topology generation. Elife 12, 1–7 (2023).
Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 115, 9929–9934 (2018).
pubmed: 30217894 pmcid: 6176625 doi: 10.1073/pnas.1804177115
de Jong, D. H., Baoukina, S., Ingólfsson, H. I. & Marrink, S. J. Martini straight: boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 199, 1–7 (2016).
doi: 10.1016/j.cpc.2015.09.014
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
doi: 10.1063/1.448118
Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15, 2620–2634 (2019).
pubmed: 30865832 doi: 10.1021/acs.jctc.8b01123
Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct., Bioinforma. 65, 712–725 (2006).
doi: 10.1002/prot.21123
Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863–3871 (2014).
pubmed: 25400877 pmcid: 4226301 doi: 10.1021/jz501780a
Homeyer, N., Horn, A. H. C., Lanig, H. & Sticht, H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model 12, 281–289 (2006).
pubmed: 16240095 doi: 10.1007/s00894-005-0028-4
Park, S., Radmer, R. J., Klein, T. E. & Pande, V. S. A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen‐like peptides. J. Comput Chem. 26, 1612–1616 (2005).
pubmed: 16170799 doi: 10.1002/jcc.20301
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
doi: 10.1063/1.328693
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
doi: 10.1063/1.464397
Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).
pubmed: 26619985 doi: 10.1021/ct700200b
Michaud‐Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput Chem. 32, 2319–2327 (2011).
pubmed: 21500218 pmcid: 3144279 doi: 10.1002/jcc.21787
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33–38 (1996).
pubmed: 8744570 doi: 10.1016/0263-7855(96)00018-5
Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 8183–8188 (2010).
pubmed: 20404210 pmcid: 2889596 doi: 10.1073/pnas.0911107107
Flory, P. J. The configuration of real polymer chains. J. Chem. Phys. 17, 303–310 (1949).
doi: 10.1063/1.1747243
Dima, R. I. & Thirumalai, D. Asymmetry in the shapes of folded and denatured states of proteins. J. Phys. Chem. B 108, 6564–6570 (2004).
doi: 10.1021/jp037128y
Shapovalov, M., Vucetic, S. & Dunbrack, R. L. A new clustering and nomenclature for beta turns derived from high-resolution protein structures. PLoS Comput. Biol. 15, e1006844 (2019).
pubmed: 30845191 pmcid: 6424458 doi: 10.1371/journal.pcbi.1006844
Smith, P., Ziolek, R. M., Gazzarrini, E., Owen, D. M. & Lorenz, C. D. On the interaction of hyaluronic acid with synovial fluid lipid membranes. Phys. Chem. Chem. Phys. 21, 9845–9857 (2019).
pubmed: 31032510 doi: 10.1039/C9CP01532A

Auteurs

Katerina Linhartova (K)

CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia.

Francesco Luca Falginella (FL)

CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.

Martin Matl (M)

CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.

Marek Sebesta (M)

CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia. marek.sebesta@ceitec.muni.cz.

Robert Vácha (R)

CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia. robert.vacha@ceitec.muni.cz.

Richard Stefl (R)

CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia. richard.stefl@ceitec.muni.cz.
National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia. richard.stefl@ceitec.muni.cz.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH