Interpreting the biological effects of protons as a function of physical quantity: linear energy transfer or microdosimetric lineal energy spectrum?


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 Oct 2024
Historique:
received: 03 06 2024
accepted: 19 09 2024
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

The choice of appropriate physical quantities to characterize the biological effects of ionizing radiation has evolved over time coupled with advances in scientific understanding. The basic hypothesis in radiation dosimetry is that the energy deposited by ionizing radiation initiates all the consequences of exposure in a biological sample (e.g., DNA damage, reproductive cell death). Physical quantities defined to characterize energy deposition have included dose, a measure of the mean energy imparted per unit mass of the target, and linear energy transfer (LET), a measure of the mean energy deposition per unit distance that charged particles traverse in a medium. The primary advantage of using the "dose and LET" physical system is its relative simplicity, especially for presenting and recording results. Inclusion of additional information such as the energy spectrum of charged particles renders this approach adequate to describe the biological effects of large dose levels from homogeneous sources. The primary disadvantage of this system is that it does not provide a unique description of the stochastic nature of radiation interactions. We and others have used dose-averaged LET (LET

Identifiants

pubmed: 39448656
doi: 10.1038/s41598-024-73619-x
pii: 10.1038/s41598-024-73619-x
doi:

Substances chimiques

Protons 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25181

Informations de copyright

© 2024. The Author(s).

Références

Paganetti, H. et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 407–421. https://doi.org/10.1016/S0360-3016(02)02754-2 (2002).
doi: 10.1016/S0360-3016(02)02754-2 pubmed: 12023146
Paganetti, H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol. 59, R419–472. https://doi.org/10.1088/0031-9155/59/22/R419 (2014).
doi: 10.1088/0031-9155/59/22/R419 pubmed: 25361443
ICRU prescribing, recording, and reporting proton-beam therapy (ICRU report 78). J. ICRU. 7 (NP). https://doi.org/10.1093/jicru/ndm021 (2007).
Mohan, R. A review of proton therapy–current status and future directions. Precis. Radiat.Oncol. 6, 164–176 (2022).
pubmed: 36160180 pmcid: 9499036 doi: 10.1002/pro6.1149
Paganetti, H. et al. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med. Phys. 46, e53–e78 (2019).
pubmed: 30661238 pmcid: 9559855 doi: 10.1002/mp.13390
Chaudhary, P. et al. Relative biological effectiveness variation along monoenergetic and modulated Bragg peaks of a 62-MeV therapeutic proton beam: a preclinical assessment. Int. J. Radiat. Oncol. Biol. Phys. 90, 27–35 (2014).
pubmed: 24986743 doi: 10.1016/j.ijrobp.2014.05.010
Guan, F. et al. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci. Rep. 5, 9850 (2015).
pubmed: 25984967 pmcid: 4650781 doi: 10.1038/srep09850
Britten, R. A. et al. Variations in the RBE for cell killing along the depth-dose profile of a modulated proton therapy beam. Radiat. Res. 179, 21–28 (2013).
pubmed: 23148508 doi: 10.1667/RR2737.1
McNamara, A. L., Schuemann, J. & Paganetti, H. A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Phys. Med. Biol. 60, 8399 (2015).
pubmed: 26459756 pmcid: 4634882 doi: 10.1088/0031-9155/60/21/8399
Wilkens, J. & Oelfke, U. A phenomenological model for the relative biological effectiveness in therapeutic proton beams. Phys. Med. Biol. 49, 2811 (2004).
pubmed: 15285249 doi: 10.1088/0031-9155/49/13/004
Carabe, A., Moteabbed, M., Depauw, N., Schuemann, J. & Paganetti, H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys. Med. Biol. 57, 1159 (2012).
pubmed: 22330133 doi: 10.1088/0031-9155/57/5/1159
Wedenberg, M., Lind, B. K. & Hårdemark, B. A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes. Acta Oncol. 52, 580–588 (2013).
pubmed: 22909391 doi: 10.3109/0284186X.2012.705892
Grün, R., Friedrich, T., Traneus, E. & Scholz, M. Is the dose-averaged LET a reliable predictor for the relative biological effectiveness? Med. Phys. 46, 1064–1074 (2019).
pubmed: 30565705 doi: 10.1002/mp.13347
Friedrich, T. et al. DNA damage interactions on both nanometer and micrometer scale determine overall cellular damage. Sci. Rep. 8, 16063 (2018).
pubmed: 30375461 pmcid: 6207695 doi: 10.1038/s41598-018-34323-9
Kalholm, F., Grzanka, L., Traneus, E. & Bassler, N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother. Oncol. 161, 211–221 (2021).
pubmed: 33894298 doi: 10.1016/j.radonc.2021.04.007
Hall, E. J. & Giaccia, A. J. Radiobiology for the Radiologist (Lippincott Williams & Wilkins, 2006).
ICRU & Report Quantification and reporting of low-dose and other heterogeneous exposures. J. ICRU 11. 86, 1–77. https://doi.org/10.1093/jicru/ndr028 (2011).
doi: 10.1093/jicru/ndr028
Braby, L. et al. ICRU Report 98, Stochastic Nature of Radiation interactions: Microdosimetry. J. ICRU. 23, 1–168 (2023).
doi: 10.1177/14736691231211380
Guan, F. et al. RBE model-based biological dose optimization for proton radiobiology studies. Int. J. Part. Therapy. 5, 160–171 (2018).
doi: 10.14338/IJPT-18-00007.1
Guan, F. et al. Analysis of the track-and dose‐averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med. Phys. 42, 6234–6247 (2015).
pubmed: 26520716 pmcid: 4600086 doi: 10.1118/1.4932217
Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC, 2016).
Berger, M. J., Coursey, J. S., Zucker, M. A. & ESTAR PSTAR, and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.21). (1999).
Lindborg, L. & Waker, A. Microdosimetry: Experimental Methods and Applications (CRC, 2017).
Bettega, P., Calzolari, S.M., Doglia, B., Dulio, L., Tallone, A.M. & Villa, D. Technical report: cell thickness measurements by confocal fluorescence microscopy on C3H10T1/2 and V79 cells. Int. J. Radiat. Biol. 74, 397–403 (1998).
Dörschel, B., Hermsdorf, D., Pieck, S., Starke, S. & Thiele, H. Thickness measurements on cell monolayers using CR-39 detectors. Nucl. Instrum. Methods Phys. Res. Sect. B. 187, 525–534 (2002).
doi: 10.1016/S0168-583X(01)01148-X
Miller, J. H. et al. Monte Carlo simulation of single-cell irradiation by an electron microbeam. Radiat. Environ. Biophys. 39, 173–177 (2000).
pubmed: 11095147 doi: 10.1007/s004110000057
Lin, S. H. et al. A high content clonogenic survival drug screen identifies MEK inhibitors as potent radiation sensitizers for KRAS mutant non–small-cell lung cancer. J. Thorac. Oncol. 9, 965–973 (2014).
pubmed: 24922006 pmcid: 4110054 doi: 10.1097/JTO.0000000000000199
Loncol, T. et al. Radiobiological effectiveness of radiation beams with broad LET spectra: Microdosimetric analysis using biological weighting functions. Radiat. Prot. Dosimetry. 52, 347–352 (1994).
doi: 10.1093/rpd/52.1-4.347
Mohan, R. et al. Radiobiological issues in proton therapy. Acta Oncol. 56, 1367–1373 (2017).
pubmed: 28826292 doi: 10.1080/0284186X.2017.1348621
Ma, D. et al. Exploring the advantages of intensity-modulated proton therapy: Experimental validation of biological effects using two different beam intensity-modulation patterns. Sci. Rep. 10, 3199 (2020).
pubmed: 32081928 pmcid: 7035246 doi: 10.1038/s41598-020-60246-5
Kase, Y. et al. Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys. Med. Biol. 53, 37 (2007).
pubmed: 18182686 doi: 10.1088/0031-9155/53/1/003
Frese, M. C., Yu, V. K., Stewart, R. D. & Carlson, D. J. A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 442–450. https://doi.org/10.1016/j.ijrobp.2011.06.1983 (2012).
doi: 10.1016/j.ijrobp.2011.06.1983 pubmed: 22099045
Carlson, D. J., Stewart, R. D., Semenenko, V. A. & Sandison, G. A. Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing. Radiat. Res. 169, 447–459 (2008).
pubmed: 18363426 doi: 10.1667/RR1046.1
Kamp, F. et al. Fast biological modeling for voxel-based heavy ion treatment planning using the mechanistic repair-misrepair-fixation model and nuclear fragment spectra. Int. J. Radiat. Oncol. Biol. Phys. 93, 557–568 (2015).
pubmed: 26460998 doi: 10.1016/j.ijrobp.2015.07.2264
Hawkins, R. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int. J. Radiat. Biol. 69, 739–755 (1996).
pubmed: 8691026 doi: 10.1080/095530096145481
Hawkins, R. B. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med. Phys. 25, 1157–1170 (1998).
pubmed: 9682201 doi: 10.1118/1.598307
Elsasser, T. et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 78, 1177–1183. https://doi.org/10.1016/j.ijrobp.2010.05.014 (2010).
doi: 10.1016/j.ijrobp.2010.05.014 pubmed: 20732758
Stewart, R. D. et al. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med. Phys. 45, e925–e952 (2018).
pubmed: 30421808 doi: 10.1002/mp.13207
Sato, T. & Furusawa, Y. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models. Radiat. Res. 178, 341–356 (2012).
pubmed: 22880622 doi: 10.1667/RR2842.1
Inaniwa, T. & Kanematsu, N. Adaptation of stochastic microdosimetric kinetic model for charged-particle therapy treatment planning. Phys. Med. Biol. 63, 095011 (2018).
pubmed: 29726401 doi: 10.1088/1361-6560/aabede
Inaniwa, T. et al. Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neon-ion beams. Phys. Med. Biol. 65, 045005 (2020).
pubmed: 31968318 doi: 10.1088/1361-6560/ab6eba
Bronk, L. et al. Mapping the relative biological effectiveness of proton, helium and carbon ions with high-throughput techniques. Cancers. 12, 3658 (2020).
pubmed: 33291477 pmcid: 7762185 doi: 10.3390/cancers12123658
Cordoni, F. G., Missiaggia, M., Scifoni, E. & La Tessa, C. Cell survival computation via the generalized stochastic microdosimetric model (GSM2); Part I: The theoretical framework. Radiat. Res. 197, 218–232 (2022).
pubmed: 34855935
Missiaggia, M., Cordoni, F., Scifoni, E. & Tessa, C. L. Cell survival computation via the generalized stochastic microdosimetric model (gsm2); Part II: Numerical results. Radiat. Res. 201, 104–114 (2024).
pubmed: 38178781 doi: 10.1667/RADE-22-00025.1.S1
Parisi, A. et al. Development of a new microdosimetric biological weighting function for the RBE10 assessment in case of the V79 cell line exposed to ions from 1H to 238U. Phys. Med. Biol. 65, 235010 (2020).
pubmed: 33274727 doi: 10.1088/1361-6560/abbf96
Cesari, V. et al. Nanodosimetric measurements with an avalanche confinement TEPC. Radiat. Prot. Dosimetry. 99, 337–342 (2002).
pubmed: 12194318 doi: 10.1093/oxfordjournals.rpd.a006796
Mazzucconi, D. et al. Nano-microdosimetric investigation at the therapeutic proton irradiation line of CATANA. Radiat. Meas. 123, 26–33 (2019).
doi: 10.1016/j.radmeas.2019.02.012
Bortot, D. et al. A nano-microdosimetric characterization of a therapeutic carbon ion beam at CNAO. Radiat. Phys. Chem. 170, 108674 (2020).
doi: 10.1016/j.radphyschem.2019.108674
Bortot, D. et al. From micro to nanodosimetry with an avalanche-confinement TEPC: Characterization with He-4 and Li-7 ions. Radiat. Phys. Chem. 198, 110225 (2022).
doi: 10.1016/j.radphyschem.2022.110225
Simon, S. et al. National Council on Radiation Protection and Measurements, Bethesda, MD,. Report No. 181 – Evaluation of the Relative Effectiveness of Low-Energy Photons and Electrons in Inducing Cancer in Humans. (2018).
Guan, F. et al. A mechanistic relative biological effectiveness model-based biological dose optimization for charged particle radiobiology studies. Phys. Med. Biol. 64, 015008 (2018).
pubmed: 30523805 doi: 10.1088/1361-6560/aaf5df
Jones, B., Underwood, T., Carabe-Fernandez, A., Timlin, C. & Dale, R. Fast neutron relative biological effects and implications for charged particle therapy. Br. J. Radiol. 84, S11–S18 (2011).
pubmed: 22374547 doi: 10.1259/bjr/67509851
Calugaru, V. et al. Radiobiological characterization of two therapeutic proton beams with different initial energy spectra used at the Institut Curie Proton Therapy Center in Orsay. Int. J. Radiat. Oncol. Biol. Phys. 81, 1136–1143 (2011).
pubmed: 21075549 doi: 10.1016/j.ijrobp.2010.09.003
Jones, B., McMahon, S. & Prise, K. The radiobiology of proton therapy: Challenges and opportunities around relative biological effectiveness. Clin. Oncol. 30, 285–292 (2018).
doi: 10.1016/j.clon.2018.01.010
Jones, B. The influence of hypoxia on LET and RBE relationships with implications for ultra-high dose rates and FLASH modelling. Phys. Med. Biol. 67, 125011 (2022).
doi: 10.1088/1361-6560/ac6ebb

Auteurs

Fada Guan (F)

Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.

Lawrence Bronk (L)

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.

Matthew Kerr (M)

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.

Yuting Li (Y)

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.

Leslie A Braby (LA)

Department of Nuclear Engineering, Texas A&M University, College Station, TX, 77840, USA.

Mary Sobieski (M)

Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA.

Xiaochun Wang (X)

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.

Xiaodong Zhang (X)

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.

Clifford Stephan (C)

Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA.

David R Grosshans (DR)

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. dgrossha@mdanderson.org.

Radhe Mohan (R)

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. rmohan@mdanderson.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH