BCL11A intellectual developmental disorder: defining the clinical spectrum and genotype-phenotype correlations.
Journal
European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235
Informations de publication
Date de publication:
24 Oct 2024
24 Oct 2024
Historique:
received:
24
01
2024
accepted:
23
09
2024
revised:
27
04
2024
medline:
25
10
2024
pubmed:
25
10
2024
entrez:
25
10
2024
Statut:
aheadofprint
Résumé
An increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.a. Dias-Logan syndrome) ascertained through an international collaborative network, and reviewed 35 additional previously reported patients. Analysis of 77 affected individuals identified 60 unique disease-causing variants (30 frameshift, 7 missense, 6 splice-site, 17 stop-gain) and 8 unique BCL11A microdeletions. We define the most prevalent features of BCL11A-IDD: IDD, postnatal-onset microcephaly, hypotonia, behavioral abnormalities, autism spectrum disorder, and persistence of fetal hemoglobin (HbF), and identify autonomic dysregulation as new feature. BCL11A-IDD is distinguished from 2p16 microdeletion syndrome, which has a higher incidence of congenital anomalies. Our results underscore BCL11A as an important transcription factor in human hindbrain development, identifying a previously underrecognized phenotype of a small brainstem with a reduced pons/medulla ratio. Genotype-phenotype correlation revealed an isoform-dependent trend in severity of truncating variants: those affecting all isoforms are associated with higher frequency of hypotonia, and those affecting the long (BCL11A-L) and extra-long (-XL) isoforms, sparing the short (-S), are associated with higher frequency of postnatal microcephaly. With the largest international cohort to date, this study highlights persistence of fetal hemoglobin as a consistent biomarker and hindbrain abnormalities as a common feature. It contributes significantly to our understanding of BCL11A-IDD through an extensive unbiased multi-center assessment, providing valuable insights for diagnosis, management and counselling, and into BCL11A's role in brain development.
Identifiants
pubmed: 39448799
doi: 10.1038/s41431-024-01701-z
pii: 10.1038/s41431-024-01701-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
ID : UM1;HG006493
Organisme : NHGRI NIH HHS
ID : U24 HG008956
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA210561
Organisme : Wellcome Trust (Wellcome)
ID : 209568/Z/17/Z
Investigateurs
Keri Ramsey
(K)
Angela Peron
(A)
Andrea Accogli
(A)
Valeria Capra
(V)
Manuela Morleo
(M)
Marcello Scala
(M)
Marcella Zollino
(M)
Informations de copyright
© 2024. The Author(s).
Références
Peron A, Bradbury K, Viskochil DH, Dias C. BCL11A-Related Intellectual Disability. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews(®). Seattle (WA): University of Washington, Seattle; 2019.
Dias C, Estruch SB, Graham SA, McRae J, Sawiak SJ, Hurst JA, et al. BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription. Am J Hum Genet. 2016;99:253–74.
pubmed: 27453576
pmcid: 4974071
doi: 10.1016/j.ajhg.2016.05.030
Liu N, Hargreaves VV, Zhu Q, Kurland JV, Hong J, Kim W, et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. 2018;173:430–42.e17.
pubmed: 29606353
pmcid: 5889339
doi: 10.1016/j.cell.2018.03.016
Wiegreffe C, Simon R, Peschkes K, Kling C, Strehle M, Cheng J, et al. Bcl11a (Ctip1) Controls Migration of Cortical Projection Neurons through Regulation of <em>Sema3c</em>. Neuron 2015;87:311–25.
pubmed: 26182416
doi: 10.1016/j.neuron.2015.06.023
Woodworth MB, Greig LC, Liu KX, Ippolito GC, Tucker HO, Macklis JD. Ctip1 Regulates the Balance between Specification of Distinct Projection Neuron Subtypes in Deep Cortical Layers. Cell Rep. 2016;15:999–1012.
pubmed: 27117402
pmcid: 4873759
doi: 10.1016/j.celrep.2016.03.064
De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.
pubmed: 25363760
pmcid: 4402723
doi: 10.1038/nature13772
The Deciphering Developmental Disorders S. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223–8.
doi: 10.1038/nature14135
Basak A, Hancarova M, Ulirsch JC, Balci TB, Trkova M, Pelisek M, et al. BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. J Clin Investig. 2015;125:2363–8.
pubmed: 25938782
pmcid: 4497765
doi: 10.1172/JCI81163
Soblet J, Dimov I, Graf von Kalckreuth C, Cano-Chervel J, Baijot S, Pelc K, et al. BCL11A frameshift mutation associated with dyspraxia and hypotonia affecting the fine, gross, oral, and speech motor systems. Am J Med Genet Part A. 2018;176:201–8.
pubmed: 28960836
doi: 10.1002/ajmg.a.38479
Wessels MW, Cnossen MH, van Dijk TB, Gillemans N, Schmidt KLJ, van Lom K, et al. Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency. Blood Adv. 2021;5:2339–49.
pubmed: 33938942
pmcid: 8114548
doi: 10.1182/bloodadvances.2020003753
Yoshida M, Nakashima M, Okanishi T, Kanai S, Fujimoto A, Itomi K, et al. Identification of novel BCL11A variants in patients with epileptic encephalopathy: Expanding the phenotypic spectrum. Clin Genet. 2018;93:368–73.
pubmed: 28589569
doi: 10.1111/cge.13067
Korenke GC, Schulte B, Biskup S, Neidhardt J, Owczarek-Lipska M. A Novel de novo Frameshift Mutation in the BCL11A Gene in a Patient with Intellectual Disability Syndrome and Epilepsy. Mol Syndromol. 2020;11:135–40.
pubmed: 32903878
pmcid: 7445578
doi: 10.1159/000508566
Cai T, Chen X, Li J, Xiang B, Yang L, Liu Y, et al. Identification of novel mutations in the HbF repressor gene BCL11A in patients with autism and intelligence disabilities. Am J Hematol. 2017;92:E653–E6.
pubmed: 28891213
doi: 10.1002/ajh.24902
Shen Y, Li R, Teichert K, Montbleau KE, Verboon JM, Voit RA, et al. Pathogenic BCL11A variants provide insights into the mechanisms of human fetal hemoglobin silencing. PLOS Genet. 2021;17:e1009835.
pubmed: 34634037
pmcid: 8530301
doi: 10.1371/journal.pgen.1009835
Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL, et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood. 2001;98:3413–20.
pubmed: 11719382
doi: 10.1182/blood.V98.12.3413
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene. Hum Mutat. 2015;36:928–30.
pubmed: 26220891
pmcid: 4833888
doi: 10.1002/humu.22844
Swaminathan GJ, Bragin E, Chatzimichali EA, Corpas M, Bevan AP, Wright CF, et al. DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum Mol Genet. 2012;21:R37–44.
pubmed: 22962312
pmcid: 3459644
doi: 10.1093/hmg/dds362
Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D862–8.
pubmed: 26582918
doi: 10.1093/nar/gkv1222
Beleford DT, Van Ziffle J, Hodoglugil U, Slavotinek AM. A missense variant, p.(Ile269Asn), in MC4R as a secondary finding in a child with BCL11A-related intellectual disability. Eur J Med Genet. 2020;63:103969.
pubmed: 32534219
doi: 10.1016/j.ejmg.2020.103969
Aldinger KA, Timms AE, Thomson Z, Mirzaa GM, Bennett JT, Rosenberg AB, et al. Redefining the Etiologic Landscape of Cerebellar Malformations. Am J Hum Genet. 2019;105:606–15.
pubmed: 31474318
pmcid: 6731369
doi: 10.1016/j.ajhg.2019.07.019
Ottolini KM, Turner CE, Gada SM. Hypogammaglobulinemia and impaired antibody response in a child with chromosome 2p15-16.1 microdeletion syndrome. Ann Allergy Asthma Immunol. 2015;115:153–5.
pubmed: 26100565
doi: 10.1016/j.anai.2015.05.016
Carey JC, Allanson JE, Hennekam RCM, Biesecker LG. Standard terminology for phenotypic variations: The Elements of Morphology project, its current progress, and future directions. Hum Mutat. 2012;33:781–6.
pubmed: 22331827
doi: 10.1002/humu.22053
Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2020;49:D1207–D17.
pmcid: 7778952
doi: 10.1093/nar/gkaa1043
Vogel M. Childsds: data and methods around reference values in pediatrics. 2020. https://cran.r-project.org/web/packages/childsds/index.html .
Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48:1112–8.
pubmed: 27618451
pmcid: 5045715
doi: 10.1038/ng.3664
Jandeaux C, Kuchcinski G, Ternynck C, Riquet A, Leclerc X, Pruvo J-P, et al. Biometry of the Cerebellar Vermis and Brain Stem in Children: MR Imaging Reference Data from Measurements in 718 Children. Am J Neuroradiol. 2019;40:1835–41.
pubmed: 31624120
pmcid: 6975126
Severino M, Huisman TAGM. Posterior Fossa Malformations. Neuroimaging Clin North Am. 2019;29:367–83.
doi: 10.1016/j.nic.2019.03.008
Cheng J, Novati G, Pan J, Bycroft C, Žemgulytė A, Applebaum T, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science. 2023;381:eadg7492.
pubmed: 37733863
doi: 10.1126/science.adg7492
Yang Y, Xu Z, He C, Zhang B, Shi Y, Li F. Structural insights into the recognition of γ-globin gene promoter by BCL11A. Cell Res. 2019;29:960–3.
pubmed: 31467406
pmcid: 6888818
doi: 10.1038/s41422-019-0221-0
Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M, Timms AE, et al. Spatial and cell type transcriptional landscape of human cerebellar development. Nat Neurosci. 2021;24:1163–75.
pubmed: 34140698
pmcid: 8338761
doi: 10.1038/s41593-021-00872-y
Haldipur P, Aldinger KA, Bernardo S, Deng M, Timms AE, Overman LM, et al. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science. 2019;366:454–60.
pubmed: 31624095
pmcid: 6897295
doi: 10.1126/science.aax7526
Hsieh T-C, Bar-Haim A, Moosa S, Ehmke N, Gripp KW, Pantel JT, et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat Genet. 2022;54:349–57.
pubmed: 35145301
pmcid: 9272356
doi: 10.1038/s41588-021-01010-x
Hustinx A, Hellmann F, Sumer O, Javanmardi B, Andre E, Krawitz P, et al. Improving deep facial phenotyping for ultrarare disorder verification using model Ensembles. In: 2023 IEEE/CVF winter conference on applications of computer vision (WACV). IEEE; 2023.
Kingdom R, Tuke M, Wood A, Beaumont RN, Frayling TM, Weedon MN, et al. Rare genetic variants in genes and loci linked to dominant monogenic developmental disorders cause milder related phenotypes in the general population. Am J Hum Genet. 2022;109:1308–16.
pubmed: 35700724
pmcid: 9300873
doi: 10.1016/j.ajhg.2022.05.011
Teran NA, Nachun DC, Eulalio T, Ferraro NM, Smail C, Rivas MA, et al. Nonsense-mediated decay is highly stable across individuals and tissues. Am J Hum Genet 2021;108:1401–08.
pubmed: 34216550
pmcid: 8387471
doi: 10.1016/j.ajhg.2021.06.008
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
den Hoed J, Sollis E, Venselaar H, Estruch SB, Deriziotis P, Fisher SE. Functional characterization of TBR1 variants in neurodevelopmental disorder. Sci Rep. 2018;8:14279.
doi: 10.1038/s41598-018-32053-6
Rudnik-Schöneborn S, Barth PG, Zerres K. Pontocerebellar hypoplasia. Am J Med Genet Part C Semin Med Genet. 2014;166:173–83.
doi: 10.1002/ajmg.c.31403
Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA, Nakamura T, et al. Bcl11a is essential for normal lymphoid development. Nat Immunol. 2003;4:525–32.
pubmed: 12717432
doi: 10.1038/ni925
Weese-Mayer DE, Lieske SP, Boothby CM, Kenny AS, Bennett HL, Ramirez J-M. Autonomic dysregulation in young girls with Rett Syndrome during nighttime in-home recordings. Pediatr Pulmonol. 2008;43:1045–60.
pubmed: 18831533
doi: 10.1002/ppul.20866
Zollino M, Zweier C, Van Balkom ID, Sweetser DA, Alaimo J, Bijlsma EK, et al. Diagnosis and management in Pitt-Hopkins syndrome: First international consensus statement. Clin Genet. 2019;95:462–78.
pubmed: 30677142
doi: 10.1111/cge.13506
Manders AJ, von Oostrom CG, Trijbels JMF, Rutten FJ, Kleijer WJ. α-aminoadipic aciduria and persistence of fetal haemoglobin in an oligophrenic child. Eur J Pediatrics. 1981;136:51–5.
doi: 10.1007/BF00441711
Funnell APW, Prontera P, Ottaviani V, Piccione M, Giambona A, Maggio A, et al. 2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment. Blood. 2015;126:89–93.
pubmed: 26019277
pmcid: 4492199
doi: 10.1182/blood-2015-04-638528
von der Lippe C, Tveten K, Prescott TE, Holla ØL, Busk ØL, Burke KB, et al. Heterozygous variants in ZBTB7A cause a neurodevelopmental disorder associated with symptomatic overgrowth of pharyngeal lymphoid tissue, macrocephaly, and elevated fetal hemoglobin. Am J Med Genet Part A. 2022;188:272–82.
pubmed: 34515416
doi: 10.1002/ajmg.a.62492
Ngo DA, Aygun B, Akinsheye I, Hankins JS, Bhan I, Luo HY, et al. Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin. Br J Haematol. 2012;156:259–64.
pubmed: 22017641
doi: 10.1111/j.1365-2141.2011.08916.x