Silver nanoparticles versus chitosan nanoparticles effects on demineralized enamel.


Journal

BMC oral health
ISSN: 1472-6831
Titre abrégé: BMC Oral Health
Pays: England
ID NLM: 101088684

Informations de publication

Date de publication:
24 Oct 2024
Historique:
received: 20 05 2024
accepted: 30 09 2024
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

To compare the impacts of different remineralizing agents on demineralized enamel, we focused on chitosan nanoparticles (ChiNPs) and silver nanoparticles (AgNPs). This study was conducted on 40 extracted human premolars with artificially induced demineralization using demineralizing solution. Prior to the beginning of the experimental procedures, the samples were preserved in artificial saliva solution. The nanoparticles were characterized by transmission electron microscopy (TEM) and teeth were divided into four equal groups: Group A was utilized as a control group (no demineralization) and received no treatment. Group B was subjected to demineralization with no treatment. Group C was subjected to demineralization and then treated with ChiNPs. Group D was subjected to demineralization and then treated with AgNPs. The teeth were evaluated for microhardness. The enamel surfaces of all the samples were analysed by scanning electron microscopy (SEM) for morphological changes and energy dispersive X-ray analysis (EDX) for elemental analysis. The third and fourth groups had the highest mean microhardness and calcium (Ca) and phosphorous (P) contents. SEM of these two groups revealed relative restoration of homogenous remineralized enamel surface architecture with minimal micropores. Chitosan nanoparticles (NPs) and silver NPs help restore the enamel surface architecture and mineral content. Therefore, chitosan NPs and AgNPs would be beneficial for remineralizing enamel.

Sections du résumé

BACKGROUND BACKGROUND
To compare the impacts of different remineralizing agents on demineralized enamel, we focused on chitosan nanoparticles (ChiNPs) and silver nanoparticles (AgNPs).
METHODS METHODS
This study was conducted on 40 extracted human premolars with artificially induced demineralization using demineralizing solution. Prior to the beginning of the experimental procedures, the samples were preserved in artificial saliva solution. The nanoparticles were characterized by transmission electron microscopy (TEM) and teeth were divided into four equal groups: Group A was utilized as a control group (no demineralization) and received no treatment. Group B was subjected to demineralization with no treatment. Group C was subjected to demineralization and then treated with ChiNPs. Group D was subjected to demineralization and then treated with AgNPs. The teeth were evaluated for microhardness. The enamel surfaces of all the samples were analysed by scanning electron microscopy (SEM) for morphological changes and energy dispersive X-ray analysis (EDX) for elemental analysis.
RESULTS RESULTS
The third and fourth groups had the highest mean microhardness and calcium (Ca) and phosphorous (P) contents. SEM of these two groups revealed relative restoration of homogenous remineralized enamel surface architecture with minimal micropores.
CONCLUSION CONCLUSIONS
Chitosan nanoparticles (NPs) and silver NPs help restore the enamel surface architecture and mineral content. Therefore, chitosan NPs and AgNPs would be beneficial for remineralizing enamel.

Identifiants

pubmed: 39448952
doi: 10.1186/s12903-024-04982-4
pii: 10.1186/s12903-024-04982-4
doi:

Substances chimiques

Chitosan 9012-76-4
Silver 3M4G523W1G
Phosphorus 27YLU75U4W
Calcium SY7Q814VUP
Saliva, Artificial 0

Types de publication

Journal Article Comparative Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

1282

Informations de copyright

© 2024. The Author(s).

Références

Cummins D. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries. J Dent. 2013;41:S1–11. https://doi.org/10.1016/j.jdent.2010.04.002 .
doi: 10.1016/j.jdent.2010.04.002 pubmed: 23985433
Kim MJ, Lee MJ, Kim KM, Yang SY, Seo JY, Choi SH, Kwon JS. Enamel demineralization resistance and remineralization by various fluoride-releasing dental restorative materials. Materials (Basel). 2021;14:4554. https://doi.org/10.3390/ma14164554 .
doi: 10.3390/ma14164554 pubmed: 34443077 pmcid: 8402149
Marthaler TM. Changes in dental caries 1953–2003. Caries Res. 2004;38:173–81. https://doi.org/10.1159/000077752 .
doi: 10.1159/000077752 pubmed: 15153686
Khare K, Bhusari P, Soni A, Malagi SK, Abraham D, Johnson L. A comparative evaluation of efficacy of biomin F and propolis containing toothpastes on dentinal tubule occlusion with and without use of an adjunct 810 nm diode laser: An In vitro scanning electron microscope study. J Microsc Ultrastruct. 2023;11:41. https://doi.org/10.4103/jmau.jmau_133_20 .
doi: 10.4103/jmau.jmau_133_20 pubmed: 37144169
Ismail AI, Tellez M, Pitts NB, Ekstrand KR, Ricketts D, Longbottom C, et al. Caries management pathways preserve dental tissues and promote oral health. Community Dent Oral Epidemiol. 2013;41:e12-40. https://doi.org/10.1111/cdoe.12024 .
doi: 10.1111/cdoe.12024 pubmed: 24916676
Urquhart O, Tampi MP, Pilcher L, Slayton RL, Araujo MWB, Fontana M, et al. Nonrestorative treatments for caries: systematic review and network meta-analysis. J Dent Res. 2019;98:14–26. https://doi.org/10.1177/0022034518800014 .
doi: 10.1177/0022034518800014 pubmed: 30290130
Amaechi BT, AbdulAzees PA, Alshareif DO, Shehata MA, Lima PPdCS, Abdollahi A, et al. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open. 2019;5:18. https://doi.org/10.1038/s41405-019-0026-8 .
doi: 10.1038/s41405-019-0026-8 pubmed: 31839988 pmcid: 6901576
Zampetti P, Scribante A. Historical and bibliometric notes on the use of fluoride in caries prevention. Eur J Paediatr Dent. 2020;21:148–52. https://doi.org/10.23804/ejpd.2020.21.02.10 .
doi: 10.23804/ejpd.2020.21.02.10 pubmed: 32567947
Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J. 2008;53:268–73. https://doi.org/10.23804/ejpd.2020.21.02.10 .
doi: 10.23804/ejpd.2020.21.02.10 pubmed: 18782374
Hicks J, Garcia-Godoy F, Flaitz C. Biological factors in dental caries: role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). J Clin Pediatr Dent. 2004;28:203–14. https://doi.org/10.17796/jcpd.28.3.w0610427l746j34n .
doi: 10.17796/jcpd.28.3.w0610427l746j34n pubmed: 15163148
Karlinsey RL, Mackey AC, Walker ER, Frederick KE, Fowler CX. In vitro evaluation of eroded enamel treated with fluoride and a prospective tricalcium phosphate agent. J Dent Oral Hyg. 2009;1:52–8. http://www.academicjournals.org/jdoh .
Juntavee A, Juntavee N, Sinagpulo AN. Nano-hydroxyapatite gel and its effects on remineralization of artificial carious lesions. Int J Dent. 2021;2021:7256056. https://doi.org/10.1155/2021/7256056 .
doi: 10.1155/2021/7256056 pubmed: 34790238 pmcid: 8592696
Mohamed Y, Ashraf R. Remineralization potential of phosphorylated chitosan and silver diamine fluoride in comparison to sodium fluoride varnish: invitro study. Eur Arch Paediatr Dent. 2023;24:327–34. https://doi.org/10.1007/s40368-023-00794-2 .
doi: 10.1007/s40368-023-00794-2 pubmed: 37014591 pmcid: 10317901
Aras A, Celenk S, Dogan MS, Bardakci E. Comparative evaluation of combined remineralization agents on demineralized tooth surface. Niger J Clin Pract. 2019;22:1546–52. https://doi.org/10.4103/njcp.njcp_188_19 .
doi: 10.4103/njcp.njcp_188_19 pubmed: 31719276
de Carvalho FG, Magalhães TC, Teixeira NM, Gondim BLC, Carlo HL, Dos Santos RL, et al. Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng C Mater Biol Appl. 2019;104:109885. https://doi.org/10.1016/j.msec.2019.109885 .
doi: 10.1016/j.msec.2019.109885 pubmed: 31500048
Zhang J, Boyes V, Festy F, Lynch RJM, Watson TF, Banerjee A. In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan. Dent Mater. 2018;34:1154–67. https://doi.org/10.1016/j.dental.2018.04.010 .
doi: 10.1016/j.dental.2018.04.010 pubmed: 29752161
Zhang J, Lynch RJM, Watson TF, Banerjee A. Chitosan-bioglass complexes promote subsurface remineralisation of incipient human carious enamel lesions. J Dent. 2019;84:67–75. https://doi.org/10.1016/j.jdent.2019.03.006 .
doi: 10.1016/j.jdent.2019.03.006 pubmed: 30951785
Magalhães TC, Teixeira NM, França RS, Denadai ÂML, Santos RLd, Carlo HL, et al. Synthesis of a chitosan nanoparticle suspension and its protective effects against enamel demineralization after an in vitro cariogenic challenge. J Appl Oral Sci. 2021;29:e20210120. https://doi.org/10.1590/1678-7757-2021-0120 .
doi: 10.1590/1678-7757-2021-0120 pubmed: 34644779 pmcid: 8523102
Li D, Fu D, Kang H, Rong G, Jin Z, Wang X, Zhao K. Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr Drug Deliv. 2017;14:27–35. https://doi.org/10.2174/1567201813666160804121123 .
doi: 10.2174/1567201813666160804121123 pubmed: 27494157
Qu S, Ma X, Yu S, Wang R. Chitosan as a biomaterial for the prevention and treatment of dental caries: antibacterial effect, biomimetic mineralization, and drug delivery. Front Bioeng Biotechnol. 2023;11. https://doi.org/10.3389/fbioe.2023.1234758 .
Chandrasekaran M, Kim KD, Chun SC. Antibacterial activity of chitosan nanoparticles: a review. Processes. 2020;8:1173. https://doi.org/10.3390/pr8091173 .
doi: 10.3390/pr8091173
Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. Nanotechnol. 2022;11:2433–50. https://doi.org/10.1515/ntrev-2022-0137 .
doi: 10.1515/ntrev-2022-0137
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed. 2020:2555–62. https://doi.org/10.2147/IJN.S246764 .
Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances. 2014;4:3974–83. https://doi.org/10.1039/C3RA44507K .
doi: 10.1039/C3RA44507K
Martínez-Castañon G-A, Nino-Martinez N, Martinez-Gutierrez F, Martínez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanoparticle Res. 2008;10:1343–8. https://doi.org/10.1007/s11051-008-9428-6 .
doi: 10.1007/s11051-008-9428-6
Targino AGR, Flores MAP, dos Santos Junior VE, de Godoy BenéBezerra F, de Luna Freire H, Galembeck A, Rosenblatt A. An innovative approach to treating dental decay in children. A new anti-caries agent. J Mater Sci Mater Med. 2014;25:2041–7. https://doi.org/10.1007/s10856-014-5221-5 .
doi: 10.1007/s10856-014-5221-5 pubmed: 24818873
Aldhaian BA, Balhaddad AA, Alfaifi AA, Levon JA, Eckert GJ, Hara AT, Lippert F. In vitro demineralization prevention by fluoride and silver nanoparticles when applied to sound enamel and enamel caries-like lesions of varying severities. J Dent. 2021;104:103536. https://doi.org/10.1016/j.jdent.2020.103536 .
doi: 10.1016/j.jdent.2020.103536 pubmed: 33217487
Favaro JC, Detomini TR, Maia LP, Poli RC, Guiraldo RD, Lopes MB, Berger SB. Anticaries agent based on silver nanoparticles and fluoride: characterization and biological and remineralizing effects—an in vitro study. Int J Dent. 2022;2022. https://doi.org/10.1155/2022/9483589 .
Petrie A, Sabin C. Medical statistics at a glance. 4th ed. London: Wiley-Blackwell; 2019.
Dogan F, Civelek A, Oktay I. Effect of different fluoride concentrations on remineralization of demineralized enamel: An in vitro pH cycling study. OHDMBSC. 2004;1:20–6.
Hasanin MT, Elfeky SA, Mohamed MB, Amin RM. Production of well-dispersed aqueous cross-linked chitosan-based nanomaterials as alternative antimicrobial approach. J Inorg Organomet Polym Mater. 2018;28:1502–10. https://doi.org/10.1007/s10904-018-0855-2 .
doi: 10.1007/s10904-018-0855-2
Loutfy SA, El-Din HMA, Elberry MH, Allam NG, Hasanin M, Abdellah AM. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model. Adv Nat Sci Nanosci Nanotechnol. 2016;7:035008. https://doi.org/10.1088/2043-6262/7/3/035008 .
doi: 10.1088/2043-6262/7/3/035008
Habib S, Sadek H, Hasanin M, Bayoumi R. Antimicrobial activity, physical properties and sealing ability of epoxy resin-based sealer impregnated with green tea extract-chitosan microcapsules: an in-vitro study. Egypt Dent J. 2021;67:2309–19. https://doi.org/10.21608/edj.2021.64866.1526 .
doi: 10.21608/edj.2021.64866.1526
Jasem AJ, Mahmood MA. Preparation and characterization of amoxicillin-loaded chitosan nanoparticles to enhance antibacterial activity against dental decay pathogens. J Emerg Med Trauma Acute Care. 2023;2023:10. https://doi.org/10.5339/jemtac.2023.midc.10 .
doi: 10.5339/jemtac.2023.midc.10
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.
doi: 10.1039/df9511100055
Lee P, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86:3391–5. https://doi.org/10.1021/j100214a025 .
doi: 10.1021/j100214a025
Noronha Mdos S, Romão DA, Cury JA, Tabchoury CP. Effect of fluoride concentration on reduction of enamel demineralization according to the cariogenic challenge. Braz Dent J. 2016;27:393–8. https://doi.org/10.1590/0103-6440201600831 .
doi: 10.1590/0103-6440201600831 pubmed: 27652699
Alsherif AA, Farag MA, Helal MB. Efficacy of nano silver fluoride and/or diode laser in enhancing enamel anticariogenicity around orthodontic brackets. BDJ Open. 2023;9:22. https://doi.org/10.1038/s41405-023-00151-x .
doi: 10.1038/s41405-023-00151-x pubmed: 37353492 pmcid: 10290105
Bezerra SJC, Viana ÍEL, Aoki IV, Duarte S, Hara AT, Scaramucci T. In-vitro evaluation of the anti-cariogenic effect of a hybrid coating associated with encapsulated sodium fluoride and stannous chloride in nanoclays on enamel. J Appl Oral Sci. 2022;30:e20210643. https://doi.org/10.1590/1678-7757-2021-0643 .
doi: 10.1590/1678-7757-2021-0643 pubmed: 35507984 pmcid: 9064272
El-Naggar NEA, Shiha AM, Mahrous H, Mohammed AA. Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacter baumannii. Sci Rep. 2022;12:19869. https://doi.org/10.1038/s41598-022-24303-5 .
doi: 10.1038/s41598-022-24303-5 pubmed: 36400832 pmcid: 9674591
Khanmohammadi M, Elmizadeh H, Ghasemi K. Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. IJPR. 2015;14:665.
pubmed: 26330855 pmcid: 4518095
Arnold WH, Bietau V, Renner PO, Gaengler P. Micromorphological and micronanalytical characterization of stagnating and progressing root caries lesions. Arch Oral Biol. 2007;52:591–7. https://doi.org/10.1016/j.archoralbio.2006.11.008 .
doi: 10.1016/j.archoralbio.2006.11.008 pubmed: 17181998
Bell DC, Garratt-Reed AJ. Energy dispersive X-ray analysis in the electron microscope: Garland Science; 2003. https://doi.org/10.4324/9780203483428 .
Gupta BD, Semwal V, Pathak A. Nanotechnology-based fiber-optic chemical and biosensors. In: Nano-optics: fundamentals, experimental methods, and applications. 2020. p. 163.
doi: 10.1016/B978-0-12-818392-2.00007-X
Moore PL, Booth G. The welding engineer’s guide to fracture and fatigue. Cambridge: Elsevier Woodhead Publishing; 2015.
Mohammed A, Abdullah A, editors. Scanning electron microscopy (SEM): A review. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania; 2018.
De Carvalho M, Stamford TCM, Dos Santos E, Tenorio P, Sampaio F. Chitosan as an oral antimicrobial agent. Formatex. 2011;2012:13.
Noaman KM, Al-Samoly WM, Al-Hariri AA-KH. Evaluation of the degree of remineralization of subclinical carious lesions using chitosan and conventional remineralizing agents (An in vitro study). Egypt J Hosp Med. 2020;78:182–9. https://doi.org/10.21608/EJHM.2020.69376 .
Li Y, Liu Y, Psoter WJ, Nguyen OM, Bromage TG, Walters MA, et al. Assessment of the silver penetration and distribution in carious lesions of deciduous teeth treated with silver diamine fluoride. Caries Res. 2019;53:431–40. https://doi.org/10.1159/000496210 .
doi: 10.1159/000496210 pubmed: 30808824
Scarpelli BB, Punhagui MF, Hoeppner MG, Almeida RSCd, Juliani FA, Guiraldo RD, Berger SB. In vitro evaluation of the remineralizing potential and antimicrobial activity of a cariostatic agent with silver nanoparticles. Braz Dent J. 2017;28:738–43. https://doi.org/10.1590/0103-6440201701365 .
doi: 10.1590/0103-6440201701365 pubmed: 29211131
Nozari A, Ajami S, Rafiei A, Niazi E. Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary teeth enamel remineralization: an in vitro study. JCDR. 2017;11:ZC97. https://doi.org/10.7860/JCDR/2017/30108.10694 .
doi: 10.7860/JCDR/2017/30108.10694 pubmed: 29207844 pmcid: 5713866
Mei ML, Nudelman F, Marzec B, Walker J, Lo E, Walls A, Chu C-H. Formation of fluorohydroxyapatite with silver diamine fluoride. J Dent Res. 2017;96:1122–8. https://doi.org/10.1177/0022034517709738 .
doi: 10.1177/0022034517709738 pubmed: 28521107 pmcid: 5582683
Freire PL, Albuquerque AJ, Farias IA, da Silva TG, Aguiar JS, Galembeck A, et al. Antimicrobial and cytotoxicity evaluation of colloidal chitosan–silver nanoparticles–fluoride nanocomposites. Int J Biol Macromol. 2016;93:896–903. https://doi.org/10.1016/j.ijbiomac.2016.09.052 .
doi: 10.1016/j.ijbiomac.2016.09.052 pubmed: 27642129
dos Santos Jr VE, VasconcelosFilho A, Targino AGR, Flores MAP, Galembeck A, Caldas AF Jr, Rosenblatt A. A new “silver-bullet” to treat caries in children–nano silver fluoride: a randomised clinical trial. J Dent. 2014;42:945–51. https://doi.org/10.1016/j.jdent.2014.05.017 .
doi: 10.1016/j.jdent.2014.05.017 pubmed: 24930870
Soares R, De Ataide IDN, Fernandes M, Lambor R. Assessment of enamel remineralisation after treatment with four different remineralising agents: a scanning electron microscopy (SEM) study. J Clin Diagn Res. 2017;11:ZC136. https://doi.org/10.7860/JCDR/2017/23594.9758 .
doi: 10.7860/JCDR/2017/23594.9758 pubmed: 28571281 pmcid: 5449906
Wang H, Xiao Z, Yang J, Lu D, Kishen A, Li Y, et al. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ ACP nanoparticles guided by glycine. Sci Rep. 2017;7:40701. https://doi.org/10.1038/srep40701 .
doi: 10.1038/srep40701 pubmed: 28079165 pmcid: 5228061
Salvati E, Besnard C, Harper RA, Moxham T, Shelton RM, Landini G, Korsunsky AM. Finite element modelling and experimental validation of the enamel demineralisation process at the rod level. J Adv Res. 2021;29:167–77. https://doi.org/10.1016/j.jare.2020.08.018 .
doi: 10.1016/j.jare.2020.08.018 pubmed: 33842014
Besnard C, Harper RA, Salvati E, Moxham TE, Brandt LR, Landini G, et al. Analysis of in vitro demineralised human enamel using multi-scale correlative optical and scanning electron microscopy, and high-resolution synchrotron wide-angle X-ray scattering. Mater Des. 2021;206:109739. https://doi.org/10.1016/j.matdes.2021.109739 .
doi: 10.1016/j.matdes.2021.109739
Mei ML, Lo EC, Chu C. Arresting dentine caries with silver diamine fluoride: what’s behind it? J Dent Res. 2018;97:751–8. https://doi.org/10.1177/0022034518774783 .
doi: 10.1177/0022034518774783 pubmed: 29768975
Zhi Q, Lo E, Kwok A. An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine. Aust Dent J. 2013;58:50–6. https://doi.org/10.1111/adj.12033 .
doi: 10.1111/adj.12033 pubmed: 23441792
Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AdJP, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. NBM. 2008;4:237–40. https://doi.org/10.1016/j.nano.2008.04.005 .
doi: 10.1016/j.nano.2008.04.005
Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41:464–74. https://doi.org/10.1016/j.jdent.2013.02.001 .
doi: 10.1016/j.jdent.2013.02.001 pubmed: 23402889 pmcid: 3654025

Auteurs

Mariam Aboayana (M)

Department of Oral Biology, Faculty of Dentistry, Alexandria University, Elmassalah, Alexandria, Egypt. mariam.abdelaziz@alexu.edu.eg.

Marihan I Elgayar (MI)

Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.

Mohamed H A Hussein (MHA)

Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH