Silver nanoparticles versus chitosan nanoparticles effects on demineralized enamel.
Chitosan
/ chemistry
Dental Enamel
/ drug effects
Humans
Silver
/ chemistry
Tooth Demineralization
Microscopy, Electron, Scanning
Metal Nanoparticles
Spectrometry, X-Ray Emission
Tooth Remineralization
/ methods
Microscopy, Electron, Transmission
Hardness
/ drug effects
Phosphorus
/ analysis
Nanoparticles
Calcium
/ analysis
Bicuspid
In Vitro Techniques
Saliva, Artificial
/ chemistry
Chitosan nanoparticles
Demineralization
Enamel
Noncarious lesions
Remineralization
Silver nanoparticles
Journal
BMC oral health
ISSN: 1472-6831
Titre abrégé: BMC Oral Health
Pays: England
ID NLM: 101088684
Informations de publication
Date de publication:
24 Oct 2024
24 Oct 2024
Historique:
received:
20
05
2024
accepted:
30
09
2024
medline:
25
10
2024
pubmed:
25
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
To compare the impacts of different remineralizing agents on demineralized enamel, we focused on chitosan nanoparticles (ChiNPs) and silver nanoparticles (AgNPs). This study was conducted on 40 extracted human premolars with artificially induced demineralization using demineralizing solution. Prior to the beginning of the experimental procedures, the samples were preserved in artificial saliva solution. The nanoparticles were characterized by transmission electron microscopy (TEM) and teeth were divided into four equal groups: Group A was utilized as a control group (no demineralization) and received no treatment. Group B was subjected to demineralization with no treatment. Group C was subjected to demineralization and then treated with ChiNPs. Group D was subjected to demineralization and then treated with AgNPs. The teeth were evaluated for microhardness. The enamel surfaces of all the samples were analysed by scanning electron microscopy (SEM) for morphological changes and energy dispersive X-ray analysis (EDX) for elemental analysis. The third and fourth groups had the highest mean microhardness and calcium (Ca) and phosphorous (P) contents. SEM of these two groups revealed relative restoration of homogenous remineralized enamel surface architecture with minimal micropores. Chitosan nanoparticles (NPs) and silver NPs help restore the enamel surface architecture and mineral content. Therefore, chitosan NPs and AgNPs would be beneficial for remineralizing enamel.
Sections du résumé
BACKGROUND
BACKGROUND
To compare the impacts of different remineralizing agents on demineralized enamel, we focused on chitosan nanoparticles (ChiNPs) and silver nanoparticles (AgNPs).
METHODS
METHODS
This study was conducted on 40 extracted human premolars with artificially induced demineralization using demineralizing solution. Prior to the beginning of the experimental procedures, the samples were preserved in artificial saliva solution. The nanoparticles were characterized by transmission electron microscopy (TEM) and teeth were divided into four equal groups: Group A was utilized as a control group (no demineralization) and received no treatment. Group B was subjected to demineralization with no treatment. Group C was subjected to demineralization and then treated with ChiNPs. Group D was subjected to demineralization and then treated with AgNPs. The teeth were evaluated for microhardness. The enamel surfaces of all the samples were analysed by scanning electron microscopy (SEM) for morphological changes and energy dispersive X-ray analysis (EDX) for elemental analysis.
RESULTS
RESULTS
The third and fourth groups had the highest mean microhardness and calcium (Ca) and phosphorous (P) contents. SEM of these two groups revealed relative restoration of homogenous remineralized enamel surface architecture with minimal micropores.
CONCLUSION
CONCLUSIONS
Chitosan nanoparticles (NPs) and silver NPs help restore the enamel surface architecture and mineral content. Therefore, chitosan NPs and AgNPs would be beneficial for remineralizing enamel.
Identifiants
pubmed: 39448952
doi: 10.1186/s12903-024-04982-4
pii: 10.1186/s12903-024-04982-4
doi:
Substances chimiques
Chitosan
9012-76-4
Silver
3M4G523W1G
Phosphorus
27YLU75U4W
Calcium
SY7Q814VUP
Saliva, Artificial
0
Types de publication
Journal Article
Comparative Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1282Informations de copyright
© 2024. The Author(s).
Références
Cummins D. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries. J Dent. 2013;41:S1–11. https://doi.org/10.1016/j.jdent.2010.04.002 .
doi: 10.1016/j.jdent.2010.04.002
pubmed: 23985433
Kim MJ, Lee MJ, Kim KM, Yang SY, Seo JY, Choi SH, Kwon JS. Enamel demineralization resistance and remineralization by various fluoride-releasing dental restorative materials. Materials (Basel). 2021;14:4554. https://doi.org/10.3390/ma14164554 .
doi: 10.3390/ma14164554
pubmed: 34443077
pmcid: 8402149
Marthaler TM. Changes in dental caries 1953–2003. Caries Res. 2004;38:173–81. https://doi.org/10.1159/000077752 .
doi: 10.1159/000077752
pubmed: 15153686
Khare K, Bhusari P, Soni A, Malagi SK, Abraham D, Johnson L. A comparative evaluation of efficacy of biomin F and propolis containing toothpastes on dentinal tubule occlusion with and without use of an adjunct 810 nm diode laser: An In vitro scanning electron microscope study. J Microsc Ultrastruct. 2023;11:41. https://doi.org/10.4103/jmau.jmau_133_20 .
doi: 10.4103/jmau.jmau_133_20
pubmed: 37144169
Ismail AI, Tellez M, Pitts NB, Ekstrand KR, Ricketts D, Longbottom C, et al. Caries management pathways preserve dental tissues and promote oral health. Community Dent Oral Epidemiol. 2013;41:e12-40. https://doi.org/10.1111/cdoe.12024 .
doi: 10.1111/cdoe.12024
pubmed: 24916676
Urquhart O, Tampi MP, Pilcher L, Slayton RL, Araujo MWB, Fontana M, et al. Nonrestorative treatments for caries: systematic review and network meta-analysis. J Dent Res. 2019;98:14–26. https://doi.org/10.1177/0022034518800014 .
doi: 10.1177/0022034518800014
pubmed: 30290130
Amaechi BT, AbdulAzees PA, Alshareif DO, Shehata MA, Lima PPdCS, Abdollahi A, et al. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open. 2019;5:18. https://doi.org/10.1038/s41405-019-0026-8 .
doi: 10.1038/s41405-019-0026-8
pubmed: 31839988
pmcid: 6901576
Zampetti P, Scribante A. Historical and bibliometric notes on the use of fluoride in caries prevention. Eur J Paediatr Dent. 2020;21:148–52. https://doi.org/10.23804/ejpd.2020.21.02.10 .
doi: 10.23804/ejpd.2020.21.02.10
pubmed: 32567947
Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J. 2008;53:268–73. https://doi.org/10.23804/ejpd.2020.21.02.10 .
doi: 10.23804/ejpd.2020.21.02.10
pubmed: 18782374
Hicks J, Garcia-Godoy F, Flaitz C. Biological factors in dental caries: role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). J Clin Pediatr Dent. 2004;28:203–14. https://doi.org/10.17796/jcpd.28.3.w0610427l746j34n .
doi: 10.17796/jcpd.28.3.w0610427l746j34n
pubmed: 15163148
Karlinsey RL, Mackey AC, Walker ER, Frederick KE, Fowler CX. In vitro evaluation of eroded enamel treated with fluoride and a prospective tricalcium phosphate agent. J Dent Oral Hyg. 2009;1:52–8. http://www.academicjournals.org/jdoh .
Juntavee A, Juntavee N, Sinagpulo AN. Nano-hydroxyapatite gel and its effects on remineralization of artificial carious lesions. Int J Dent. 2021;2021:7256056. https://doi.org/10.1155/2021/7256056 .
doi: 10.1155/2021/7256056
pubmed: 34790238
pmcid: 8592696
Mohamed Y, Ashraf R. Remineralization potential of phosphorylated chitosan and silver diamine fluoride in comparison to sodium fluoride varnish: invitro study. Eur Arch Paediatr Dent. 2023;24:327–34. https://doi.org/10.1007/s40368-023-00794-2 .
doi: 10.1007/s40368-023-00794-2
pubmed: 37014591
pmcid: 10317901
Aras A, Celenk S, Dogan MS, Bardakci E. Comparative evaluation of combined remineralization agents on demineralized tooth surface. Niger J Clin Pract. 2019;22:1546–52. https://doi.org/10.4103/njcp.njcp_188_19 .
doi: 10.4103/njcp.njcp_188_19
pubmed: 31719276
de Carvalho FG, Magalhães TC, Teixeira NM, Gondim BLC, Carlo HL, Dos Santos RL, et al. Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng C Mater Biol Appl. 2019;104:109885. https://doi.org/10.1016/j.msec.2019.109885 .
doi: 10.1016/j.msec.2019.109885
pubmed: 31500048
Zhang J, Boyes V, Festy F, Lynch RJM, Watson TF, Banerjee A. In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan. Dent Mater. 2018;34:1154–67. https://doi.org/10.1016/j.dental.2018.04.010 .
doi: 10.1016/j.dental.2018.04.010
pubmed: 29752161
Zhang J, Lynch RJM, Watson TF, Banerjee A. Chitosan-bioglass complexes promote subsurface remineralisation of incipient human carious enamel lesions. J Dent. 2019;84:67–75. https://doi.org/10.1016/j.jdent.2019.03.006 .
doi: 10.1016/j.jdent.2019.03.006
pubmed: 30951785
Magalhães TC, Teixeira NM, França RS, Denadai ÂML, Santos RLd, Carlo HL, et al. Synthesis of a chitosan nanoparticle suspension and its protective effects against enamel demineralization after an in vitro cariogenic challenge. J Appl Oral Sci. 2021;29:e20210120. https://doi.org/10.1590/1678-7757-2021-0120 .
doi: 10.1590/1678-7757-2021-0120
pubmed: 34644779
pmcid: 8523102
Li D, Fu D, Kang H, Rong G, Jin Z, Wang X, Zhao K. Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr Drug Deliv. 2017;14:27–35. https://doi.org/10.2174/1567201813666160804121123 .
doi: 10.2174/1567201813666160804121123
pubmed: 27494157
Qu S, Ma X, Yu S, Wang R. Chitosan as a biomaterial for the prevention and treatment of dental caries: antibacterial effect, biomimetic mineralization, and drug delivery. Front Bioeng Biotechnol. 2023;11. https://doi.org/10.3389/fbioe.2023.1234758 .
Chandrasekaran M, Kim KD, Chun SC. Antibacterial activity of chitosan nanoparticles: a review. Processes. 2020;8:1173. https://doi.org/10.3390/pr8091173 .
doi: 10.3390/pr8091173
Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. Nanotechnol. 2022;11:2433–50. https://doi.org/10.1515/ntrev-2022-0137 .
doi: 10.1515/ntrev-2022-0137
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed. 2020:2555–62. https://doi.org/10.2147/IJN.S246764 .
Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances. 2014;4:3974–83. https://doi.org/10.1039/C3RA44507K .
doi: 10.1039/C3RA44507K
Martínez-Castañon G-A, Nino-Martinez N, Martinez-Gutierrez F, Martínez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanoparticle Res. 2008;10:1343–8. https://doi.org/10.1007/s11051-008-9428-6 .
doi: 10.1007/s11051-008-9428-6
Targino AGR, Flores MAP, dos Santos Junior VE, de Godoy BenéBezerra F, de Luna Freire H, Galembeck A, Rosenblatt A. An innovative approach to treating dental decay in children. A new anti-caries agent. J Mater Sci Mater Med. 2014;25:2041–7. https://doi.org/10.1007/s10856-014-5221-5 .
doi: 10.1007/s10856-014-5221-5
pubmed: 24818873
Aldhaian BA, Balhaddad AA, Alfaifi AA, Levon JA, Eckert GJ, Hara AT, Lippert F. In vitro demineralization prevention by fluoride and silver nanoparticles when applied to sound enamel and enamel caries-like lesions of varying severities. J Dent. 2021;104:103536. https://doi.org/10.1016/j.jdent.2020.103536 .
doi: 10.1016/j.jdent.2020.103536
pubmed: 33217487
Favaro JC, Detomini TR, Maia LP, Poli RC, Guiraldo RD, Lopes MB, Berger SB. Anticaries agent based on silver nanoparticles and fluoride: characterization and biological and remineralizing effects—an in vitro study. Int J Dent. 2022;2022. https://doi.org/10.1155/2022/9483589 .
Petrie A, Sabin C. Medical statistics at a glance. 4th ed. London: Wiley-Blackwell; 2019.
Dogan F, Civelek A, Oktay I. Effect of different fluoride concentrations on remineralization of demineralized enamel: An in vitro pH cycling study. OHDMBSC. 2004;1:20–6.
Hasanin MT, Elfeky SA, Mohamed MB, Amin RM. Production of well-dispersed aqueous cross-linked chitosan-based nanomaterials as alternative antimicrobial approach. J Inorg Organomet Polym Mater. 2018;28:1502–10. https://doi.org/10.1007/s10904-018-0855-2 .
doi: 10.1007/s10904-018-0855-2
Loutfy SA, El-Din HMA, Elberry MH, Allam NG, Hasanin M, Abdellah AM. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model. Adv Nat Sci Nanosci Nanotechnol. 2016;7:035008. https://doi.org/10.1088/2043-6262/7/3/035008 .
doi: 10.1088/2043-6262/7/3/035008
Habib S, Sadek H, Hasanin M, Bayoumi R. Antimicrobial activity, physical properties and sealing ability of epoxy resin-based sealer impregnated with green tea extract-chitosan microcapsules: an in-vitro study. Egypt Dent J. 2021;67:2309–19. https://doi.org/10.21608/edj.2021.64866.1526 .
doi: 10.21608/edj.2021.64866.1526
Jasem AJ, Mahmood MA. Preparation and characterization of amoxicillin-loaded chitosan nanoparticles to enhance antibacterial activity against dental decay pathogens. J Emerg Med Trauma Acute Care. 2023;2023:10. https://doi.org/10.5339/jemtac.2023.midc.10 .
doi: 10.5339/jemtac.2023.midc.10
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.
doi: 10.1039/df9511100055
Lee P, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86:3391–5. https://doi.org/10.1021/j100214a025 .
doi: 10.1021/j100214a025
Noronha Mdos S, Romão DA, Cury JA, Tabchoury CP. Effect of fluoride concentration on reduction of enamel demineralization according to the cariogenic challenge. Braz Dent J. 2016;27:393–8. https://doi.org/10.1590/0103-6440201600831 .
doi: 10.1590/0103-6440201600831
pubmed: 27652699
Alsherif AA, Farag MA, Helal MB. Efficacy of nano silver fluoride and/or diode laser in enhancing enamel anticariogenicity around orthodontic brackets. BDJ Open. 2023;9:22. https://doi.org/10.1038/s41405-023-00151-x .
doi: 10.1038/s41405-023-00151-x
pubmed: 37353492
pmcid: 10290105
Bezerra SJC, Viana ÍEL, Aoki IV, Duarte S, Hara AT, Scaramucci T. In-vitro evaluation of the anti-cariogenic effect of a hybrid coating associated with encapsulated sodium fluoride and stannous chloride in nanoclays on enamel. J Appl Oral Sci. 2022;30:e20210643. https://doi.org/10.1590/1678-7757-2021-0643 .
doi: 10.1590/1678-7757-2021-0643
pubmed: 35507984
pmcid: 9064272
El-Naggar NEA, Shiha AM, Mahrous H, Mohammed AA. Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacter baumannii. Sci Rep. 2022;12:19869. https://doi.org/10.1038/s41598-022-24303-5 .
doi: 10.1038/s41598-022-24303-5
pubmed: 36400832
pmcid: 9674591
Khanmohammadi M, Elmizadeh H, Ghasemi K. Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. IJPR. 2015;14:665.
pubmed: 26330855
pmcid: 4518095
Arnold WH, Bietau V, Renner PO, Gaengler P. Micromorphological and micronanalytical characterization of stagnating and progressing root caries lesions. Arch Oral Biol. 2007;52:591–7. https://doi.org/10.1016/j.archoralbio.2006.11.008 .
doi: 10.1016/j.archoralbio.2006.11.008
pubmed: 17181998
Bell DC, Garratt-Reed AJ. Energy dispersive X-ray analysis in the electron microscope: Garland Science; 2003. https://doi.org/10.4324/9780203483428 .
Gupta BD, Semwal V, Pathak A. Nanotechnology-based fiber-optic chemical and biosensors. In: Nano-optics: fundamentals, experimental methods, and applications. 2020. p. 163.
doi: 10.1016/B978-0-12-818392-2.00007-X
Moore PL, Booth G. The welding engineer’s guide to fracture and fatigue. Cambridge: Elsevier Woodhead Publishing; 2015.
Mohammed A, Abdullah A, editors. Scanning electron microscopy (SEM): A review. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania; 2018.
De Carvalho M, Stamford TCM, Dos Santos E, Tenorio P, Sampaio F. Chitosan as an oral antimicrobial agent. Formatex. 2011;2012:13.
Noaman KM, Al-Samoly WM, Al-Hariri AA-KH. Evaluation of the degree of remineralization of subclinical carious lesions using chitosan and conventional remineralizing agents (An in vitro study). Egypt J Hosp Med. 2020;78:182–9. https://doi.org/10.21608/EJHM.2020.69376 .
Li Y, Liu Y, Psoter WJ, Nguyen OM, Bromage TG, Walters MA, et al. Assessment of the silver penetration and distribution in carious lesions of deciduous teeth treated with silver diamine fluoride. Caries Res. 2019;53:431–40. https://doi.org/10.1159/000496210 .
doi: 10.1159/000496210
pubmed: 30808824
Scarpelli BB, Punhagui MF, Hoeppner MG, Almeida RSCd, Juliani FA, Guiraldo RD, Berger SB. In vitro evaluation of the remineralizing potential and antimicrobial activity of a cariostatic agent with silver nanoparticles. Braz Dent J. 2017;28:738–43. https://doi.org/10.1590/0103-6440201701365 .
doi: 10.1590/0103-6440201701365
pubmed: 29211131
Nozari A, Ajami S, Rafiei A, Niazi E. Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary teeth enamel remineralization: an in vitro study. JCDR. 2017;11:ZC97. https://doi.org/10.7860/JCDR/2017/30108.10694 .
doi: 10.7860/JCDR/2017/30108.10694
pubmed: 29207844
pmcid: 5713866
Mei ML, Nudelman F, Marzec B, Walker J, Lo E, Walls A, Chu C-H. Formation of fluorohydroxyapatite with silver diamine fluoride. J Dent Res. 2017;96:1122–8. https://doi.org/10.1177/0022034517709738 .
doi: 10.1177/0022034517709738
pubmed: 28521107
pmcid: 5582683
Freire PL, Albuquerque AJ, Farias IA, da Silva TG, Aguiar JS, Galembeck A, et al. Antimicrobial and cytotoxicity evaluation of colloidal chitosan–silver nanoparticles–fluoride nanocomposites. Int J Biol Macromol. 2016;93:896–903. https://doi.org/10.1016/j.ijbiomac.2016.09.052 .
doi: 10.1016/j.ijbiomac.2016.09.052
pubmed: 27642129
dos Santos Jr VE, VasconcelosFilho A, Targino AGR, Flores MAP, Galembeck A, Caldas AF Jr, Rosenblatt A. A new “silver-bullet” to treat caries in children–nano silver fluoride: a randomised clinical trial. J Dent. 2014;42:945–51. https://doi.org/10.1016/j.jdent.2014.05.017 .
doi: 10.1016/j.jdent.2014.05.017
pubmed: 24930870
Soares R, De Ataide IDN, Fernandes M, Lambor R. Assessment of enamel remineralisation after treatment with four different remineralising agents: a scanning electron microscopy (SEM) study. J Clin Diagn Res. 2017;11:ZC136. https://doi.org/10.7860/JCDR/2017/23594.9758 .
doi: 10.7860/JCDR/2017/23594.9758
pubmed: 28571281
pmcid: 5449906
Wang H, Xiao Z, Yang J, Lu D, Kishen A, Li Y, et al. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ ACP nanoparticles guided by glycine. Sci Rep. 2017;7:40701. https://doi.org/10.1038/srep40701 .
doi: 10.1038/srep40701
pubmed: 28079165
pmcid: 5228061
Salvati E, Besnard C, Harper RA, Moxham T, Shelton RM, Landini G, Korsunsky AM. Finite element modelling and experimental validation of the enamel demineralisation process at the rod level. J Adv Res. 2021;29:167–77. https://doi.org/10.1016/j.jare.2020.08.018 .
doi: 10.1016/j.jare.2020.08.018
pubmed: 33842014
Besnard C, Harper RA, Salvati E, Moxham TE, Brandt LR, Landini G, et al. Analysis of in vitro demineralised human enamel using multi-scale correlative optical and scanning electron microscopy, and high-resolution synchrotron wide-angle X-ray scattering. Mater Des. 2021;206:109739. https://doi.org/10.1016/j.matdes.2021.109739 .
doi: 10.1016/j.matdes.2021.109739
Mei ML, Lo EC, Chu C. Arresting dentine caries with silver diamine fluoride: what’s behind it? J Dent Res. 2018;97:751–8. https://doi.org/10.1177/0022034518774783 .
doi: 10.1177/0022034518774783
pubmed: 29768975
Zhi Q, Lo E, Kwok A. An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine. Aust Dent J. 2013;58:50–6. https://doi.org/10.1111/adj.12033 .
doi: 10.1111/adj.12033
pubmed: 23441792
Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AdJP, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. NBM. 2008;4:237–40. https://doi.org/10.1016/j.nano.2008.04.005 .
doi: 10.1016/j.nano.2008.04.005
Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41:464–74. https://doi.org/10.1016/j.jdent.2013.02.001 .
doi: 10.1016/j.jdent.2013.02.001
pubmed: 23402889
pmcid: 3654025