The United European Gastroenterology green paper-climate change and gastroenterology.
climate change
climate‐sensitive diseases
eco‐gastroenterologist
eco‐intensivist
eco‐surgeon
greener gastroenterology
sustainable healthcare
Journal
United European gastroenterology journal
ISSN: 2050-6414
Titre abrégé: United European Gastroenterol J
Pays: England
ID NLM: 101606807
Informations de publication
Date de publication:
25 Oct 2024
25 Oct 2024
Historique:
received:
11
08
2024
accepted:
10
09
2024
medline:
25
10
2024
pubmed:
25
10
2024
entrez:
25
10
2024
Statut:
aheadofprint
Résumé
Climate change, described by the World Health Organization (WHO) in 2021 as 'the single biggest health threat facing humanity', causes extreme weather, disrupts food supplies, and increases the prevalence of diseases, thereby affecting human health, medical practice, and healthcare stability. Greener Gastroenterology is an important movement that has the potential to make a real difference in reducing the impact of the delivery of healthcare, on the environment. The WHO defines an environmentally sustainable health system as one which would improve, maintain or restore health while minimizing negative environmental impacts. Gastroenterologists encounter the impacts of climate change in daily patient care. Alterations in the gut microbiome and dietary habits, air pollution, heat waves, and the distribution of infectious diseases result in changed disease patterns affecting gastrointestinal and hepatic health, with particularly severe impacts on vulnerable groups such as children, adolescents, and the elderly. Additionally, women are disproportionally affected, since climate change can exacerbate gender inequalities. Paradoxically, while healthcare aims to improve health, the sector is responsible for 4.4% of global carbon emissions. Endoscopy is a significant waste producer in healthcare, being the third highest generator with 3.09 kg of waste per day per bed, contributing to the carbon footprint of the GI sector. Solutions to the climate crisis can offer significant health co-benefits. Steps to reduce our carbon footprint include fostering a Planetary Health Diet and implementing measures for greener healthcare, such as telemedicine, digitalization, education, and research on sustainable healthcare practices. Adhering to the principles of 'reduce, reuse, recycle' is crucial. Reducing unnecessary procedures, which constitute a significant portion of endoscopies, can significantly decrease the carbon footprint and enhance sustainability. This position paper by the United European Gastroenterology aims to raise awareness and outline key principles that the GI workforce can adopt to tackle the climate crisis together.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 The Author(s). United European Gastroenterology Journal published by Wiley Periodicals LLC on behalf of United European Gastroenterology.
Références
Bhopal A, Norheim OF. Fair pathways to net‐zero healthcare. Nat Med. 2023;29(5):1078–1084. https://doi.org/10.1038/s41591‐023‐02351‐2
Karliner J, Slotterback S, Boyd R, et al. Health care’s climate footprint. Health Care Without Harm and ARUP. 2019.
WHO. Fact sheet: climate change and health. 2021. https://www.who.int/news‐room/fact‐sheets/detail/climate‐change‐and‐health
The Lancet Public H. No public health without planetary health. Lancet Public Health. 2022;7:e291. https://doi.org/10.1016/s2468‐2667(22)00068‐8
Yin J, Wu X, Li S, Li C, Guo Z. Impact of environmental factors on gastric cancer: a review of the scientific evidence, human prevention and adaptation. J Environ Sci (China). 2020;89:65–79. https://doi.org/10.1016/j.jes.2019.09.025
Weinmayr G, Pedersen M, Stafoggia M, Andersen ZJ, Galassi C, Munkenast J, et al. Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE). Environ Int. 2018;120:163–171. https://doi.org/10.1016/j.envint.2018.07.030
May Maestas M, Perry KD, Smith K, Firszt R, Allen‐Brady K, Robson J, et al. Food impactions in Eosinophilic esophagitis and acute exposures to fine particulate pollution. Allergy. 2019;74(12):2529–2530. https://doi.org/10.1111/all.13932
Cianferoni A, Jensen E, Davis CM. The role of the environment in eosinophilic esophagitis. J Allergy Clin Immunol Pract. 2021;9:3268–3274. https://doi.org/10.1016/j.jaip.2021.07.032
Williams CE, Williams CL, Logan ML. Climate change is not just global warming: multidimensional impacts on animal gut microbiota. Microb Biotechnol n/a. 2023;16(9):1736–1744. https://doi.org/10.1111/1751‐7915.14276
Fontaine SS, Novarro AJ, Kohl KD. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J Exp Biol. 2018;221. https://doi.org/10.1242/jeb.187559
Chen S, Zheng Y, Zhou Y, Guo W, Tang Q, Rong G, et al. Gut dysbiosis with minimal enteritis induced by high temperature and humidity. Sci Rep. 2019;9(1):18686. https://doi.org/10.1038/s41598‐019‐55337‐x
Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. mBio. 2016;7(5):20161004. https://doi.org/10.1128/mBio.01578‐16
Gunawan WB, Abadi MNP, Fadhillah FS, Nurkolis F, Pramono A. The interlink between climate changes, gut microbiota, and aging processes. Hum Nutr & Metab. 2023;32:200193. https://doi.org/10.1016/j.hnm.2023.200193
Tasnim N, Abulizi N, Pither J, Hart MM, Gibson DL. Linking the gut microbial ecosystem with the environment: does gut health depend on where we live? Front Microbiol. 2017;8:1935. https://doi.org/10.3389/fmicb.2017.01935
Blum WEH, Zechmeister‐Boltenstern S, Keiblinger KM. Does soil contribute to the human gut microbiome? Microorganisms. 2019;7(9):20190823. https://doi.org/10.3390/microorganisms7090287
Donnelly MC, Talley NJ. Effects of climate change on digestive health and preventative measures. Gut. 2023;72(12):2199–2201. https://doi.org/10.1136/gutjnl‐2023‐331187
Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res. 2020;116(11):1910–1917. https://doi.org/10.1093/cvr/cvaa025
Sadeghi A, Leddin D, Malekzadeh R. Mini review: the impact of climate change on gastrointestinal health. Middle East J Dig Dis. 2023;15(2):72–75. https://doi.org/10.34172/mejdd.2023.325
D'Amato G, Holgate ST, Pawankar R, et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J. 2015;8:25. https://doi.org/10.1186/s40413‐015‐0073‐0
Alenezy N, Nugent Z, Herman S, Zaborniak K, Ramsey CD, Bernstein CN. Aeroallergen‐related diseases predate the diagnosis of inflammatory bowel disease. Inflamm Bowel Dis. 2023;29(7):1073–1079. https://doi.org/10.1093/ibd/izac184
Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, et al. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. Lancet. 2022;400(10363):1619–1654. https://doi.org/10.1016/s0140‐6736(22)01540‐9
Vergunst F, Berry HL, Minor K, Chadi N. Climate change and substance‐use behaviors: a risk‐pathways framework. Perspect Psychol Sci. 2023;18(4):936–954. https://doi.org/10.1177/17456916221132739
Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–217. https://doi.org/10.1038/nrgastro.2015.34
Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology. 2016;150(6):1262–1279. https://doi.org/10.1053/j.gastro.2016.02.032
Donnelly MC, Stableforth W, Krag A, Reuben A. The negative bidirectional interaction between climate change and the prevalence and care of liver disease: a joint BSG, BASL, EASL, and AASLD commentary. Gastroenterology. 2022;162(6):1561–1567. https://doi.org/10.1053/j.gastro.2022.02.020
Singer M, Bulled N, Ostrach B, Mendenhall E. Syndemics and the biosocial conception of health. Lancet. 2017;389(10072):941–950. https://doi.org/10.1016/s0140‐6736(17)30003‐x
Dietz WH. Climate change and malnutrition: we need to act now. The J Clin Invest. 2020;130(2):556–558. https://doi.org/10.1172/jci135004
Fanzo JC, Downs SM. Climate change and nutrition‐associated diseases. Nat Rev Dis Prim. 2021;7(1):90. https://doi.org/10.1038/s41572‐021‐00329‐3
Bauer KC, Littlejohn PT, Ayala V, Creus‐Cuadros A, Finlay BB. Nonalcoholic fatty liver disease and the gut‐liver Axis: exploring an undernutrition perspective. Gastroenterology. 2022;162(7):1858–1875. e1852. 20220303. https://doi.org/10.1053/j.gastro.2022.01.058
Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet commission report. Lancet. 2019;393(10173):791–846. https://doi.org/10.1016/s0140‐6736(18)32822‐8
Ozdemir C, Kucuksezer UC, Ogulur I, Pat Y, Yazici D, Agache I, et al. How does global warming contribute to disorders originating from an impaired epithelial barrier? Ann Allergy Asthma Immunol. 2023;131(6):703–712. https://doi.org/10.1016/j.anai.2023.08.010
VoPham T, Kim NJ, Berry K, Mendoza JA, Kaufman JD, Ioannou GN. PM2.5 air pollution exposure and nonalcoholic fatty liver disease in the Nationwide Inpatient Sample. Environ Res. 2022;213:113611. https://doi.org/10.1016/j.envres.2022.113611
Sun S, Yang Q, Zhou Q, Cao W, Yu S, Zhan S, et al. Long‐term exposure to air pollution, habitual physical activity and risk of non‐alcoholic fatty liver disease: a prospective cohort study. Ecotoxicol Environ Saf. 2022;235:113440. https://doi.org/10.1016/j.ecoenv.2022.113440
Guo B, Guo Y, Nima Q, Feng Y, Wang Z, Lu R, et al. Exposure to air pollution is associated with an increased risk of metabolic dysfunction‐associated fatty liver disease. J Hepatol. 2022;76(3):518–525. https://doi.org/10.1016/j.jhep.2021.10.016
Moretti A, Pascale M, Logrieco AF. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci Technol. 2019;84:38–40. https://doi.org/10.1016/j.tifs.2018.03.008
Leggieri MC, Toscano P, Battilani P. Predicted aflatoxin B(1) increase in Europe due to climate change: actions and reactions at global level. Toxins (Basel). 2021;13(4):20210420. https://doi.org/10.3390/toxins13040292
Saad‐Hussein A, Ramadan HK, Bareedy A, Elwakil R. Role of climate change in changing hepatic health maps. Curr Environ Health Rep. 2022;9(2):299–314. https://doi.org/10.1007/s40572‐022‐00352‐w
Pritchett N, Spangler EC, Gray GM, Livinski AA, Sampson JN, Dawsey SM, et al. Exposure to outdoor particulate matter air pollution and risk of gastrointestinal cancers in adults: a systematic review and meta‐analysis of epidemiologic evidence. Environ Health Perspect. 2022;130(3):36001. https://doi.org/10.1289/ehp9620
Parks RM, Rowland ST, Do V, Boehme AK, Dominici F, Hart CL, et al. The association between temperature and alcohol‐ and substance‐related disorder hospital visits in New York State. Commun Med. 2023;3(1):118. https://doi.org/10.1038/s43856‐023‐00346‐1
Semenza JC, Suk JE. Vector‐borne diseases and climate change: a European perspective. FEMS Microbiol Lett. 2018;365(2). https://doi.org/10.1093/femsle/fnx244
Hess J, Boodram LG, Paz S, Stewart Ibarra AM, Wasserheit JN, Lowe R. Strengthening the global response to climate change and infectious disease threats. Bmj. 2020;371:m3081. https://doi.org/10.1136/bmj.m3081
McIntyre KM, Setzkorn C, Hepworth PJ, Morand S, Morse AP, Baylis M. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci Rep. 2017;7(1):7134. https://doi.org/10.1038/s41598‐017‐06948‐9
Semenza JC, Ko AI. Waterborne diseases that are sensitive to climate variability and climate change. N Engl J Med. 2023;389(23):2175–2187. https://doi.org/10.1056/NEJMra2300794
Fox NJ, White PC, McClean CJ, Marion G, Evans A, Hutchings MR. Predicting impacts of climate change on Fasciola hepatica risk. PLoS One. 2011;6(20110110):e16126. https://doi.org/10.1371/journal.pone.0016126
Thomson MC, Stanberry LR. Climate change and vectorborne diseases. N Engl J Med. 2022;387(21):1969–1978. https://doi.org/10.1056/NEJMra2200092
Selstad Utaaker K, Robertson LJ. Climate change and foodborne transmission of parasites: a consideration of possible interactions and impacts for selected parasites. Food Res Int. 2015;68:16–23. https://doi.org/10.1016/j.foodres.2014.06.051
Mas‐Coma S, Valero MA, Bargues MD. Effects of climate change on animal and zoonotic helminthiases. Rev Sci Tech. 2008;27(2):443–457. https://doi.org/10.20506/rst.27.2.1822
Blum AJ, Hotez PJ. Global “worming”: climate change and its projected general impact on human helminth infections. Plos Negl Trop Dis. 2018;12(7):e0006370. https://doi.org/10.1371/journal.pntd.0006370
Leo GAD, Stensgaard A.‐S, Sokolow SH, N’Goran EK, Chamberlin AJ, Yang GJ, et al. Schistosomiasis and climate change. BMJ. 2020;371:m4324. https://doi.org/10.1136/bmj.m4324
Traidl‐Hoffmann C, Schulz C, Herrmann M, et al. Planetary health ‐ klima. Umwelt Gesundheit im Anthropozän; 2021.
Pozio E. How globalization and climate change could affect foodborne parasites. Exp Parasitol. 2020;208:107807. https://doi.org/10.1016/j.exppara.2019.107807
Zhang L, Rohr J, Cui R, Xin Y, Han L, Yang X, et al. Biological invasions facilitate zoonotic disease emergences. Nat Commun. 2022;13(1):1762. https://doi.org/10.1038/s41467‐022‐29378‐2
Carlson CJ. After millions of preventable deaths, climate change must be treated like a health emergency. Nat Med. 2024;30(3):622. https://doi.org/10.1038/s41591‐023‐02765‐y
Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, et al. Climate change increases cross‐species viral transmission risk. Nature. 2022;607(7919):555–562. https://doi.org/10.1038/s41586‐022‐04788‐w
Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, Knudson TA, et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Change. 2022;12(9):869–875. https://doi.org/10.1038/s41558‐022‐01426‐1
Rees N. The climate crisis is a child rights crisis: introducing the Children's climate risk index. UNICEF; 2021.
Perera F, Nadeau K. Climate change, fossil‐fuel pollution, and children's health. N Engl J Med. 2022;386(24):2303–2314. https://doi.org/10.1056/NEJMra2117706
UNICEF. The climate‐changed child: a children's climate risk index supplement. 2023.
Xu Z, Sheffield PE, Su H, Wang X, Bi Y, Tong S. The impact of heat waves on children's health: a systematic review. Int J Biometeorol. 2014;58(2):239–247. https://doi.org/10.1007/s00484‐013‐0655‐x
Sulser T, Wiebe KD, Dunston S, et al. Climate change and hunger: estimating costs of adaptation in the agrifood system. International Food Policy Research Institute; 2021.
Chitre SD, Crews CM, Tessema MT, Plėštytė‐Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res. 2024;95(2):496–507. https://doi.org/10.1038/s41390‐023‐02929‐z
Sheffield PE, Landrigan PJ. Global climate change and children's health: threats and strategies for prevention. Environ Health Perspect. 2011;119(3):291–298. https://doi.org/10.1289/ehp.1002233
Helldén D, Andersson C, Nilsson M, Ebi KL, Friberg P, Alfvén T. Climate change and child health: a scoping review and an expanded conceptual framework. Lancet Planet Health. 2021;5(3):e164–e175. https://doi.org/10.1016/S2542‐5196(20)30274‐6
Bell ML, Gasparrini A, Benjamin GC. Climate change, extreme heat, and health. N Engl J Med. 2024;390(19):1793–1801. https://doi.org/10.1056/NEJMra2210769
Romanello M, Napoli CD, Green C, Kennard H, Lampard P, Scamman D, et al. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health‐centred response in a world facing irreversible harms. Lancet. 2023;402(10419):2346–2394. https://doi.org/10.1016/s0140‐6736(23)01859‐7
van Daalen KR, Tonne C, Semenza JC, Rocklöv J, Markandya A, Dasandi N, et al. The 2024 Europe report of the Lancet Countdown on health and climate change: unprecedented warming demands unprecedented action. Lancet Public Health. 2024;2024(7):20240510. https://doi.org/10.1016/s2468‐2667(24)00055‐0
van Daalen K, Jung L, Dhatt R, Phelan AL. Climate change and gender‐based health disparities. Lancet Planet Health. 2020;4(2):e44–e45. https://doi.org/10.1016/s2542‐5196(20)30001‐2
IPCC. Sixth assessment report, fact sheet‐ food and water. 2022.
Gaigbe‐Togbe V, Bassarsky L, Gu D, et al. World population prospects 2022. United Nations: New York: Google Scholar; 2022.
Trentinaglia MT, Parolini M, Donzelli F, Olper A. Climate change and obesity: a global analysis. Global Food Secur. 2021;29:100539. https://doi.org/10.1016/j.gfs.2021.100539
An R, Ji M, Zhang S. Global warming and obesity: a systematic review. Obes Rev. 2018;19(2):150–163. https://doi.org/10.1111/obr.12624
WHO. World report on the health of refugees and migrants: summary. World Health Organization; 2022.
Kälin W, Weerasinghe S. Environmental migrants and global governance: facts, policies and practices, 37. Migration Research Leaders’ Syndicate; 2017.
Myran DT, Morton R, Biggs BA, Veldhuijzen I, Castelli F, Tran A, et al. The effectiveness and cost‐effectiveness of screening for and vaccination against hepatitis B virus among migrants in the EU/EEA: a systematic review. Int J Environ Res Public Health. 2018;15(9):20180901. https://doi.org/10.3390/ijerph15091898
Cunha MF, Pellino G. Environmental effects of surgical procedures and strategies for sustainable surgery. Nat Rev Gastroenterol Hepatol. 2023;20(6):399–410. https://doi.org/10.1038/s41575‐022‐00716‐5
WbcfS D, Institute WR. Greenhouse gas Protocol: product life cycle accounting and reporting standard. World Resources Institute; 2011.
Crippa M, Solazzo E, Guizzardi D, Monforti‐Ferrario F, Tubiello FN, Leip A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food. 2021;2(3):198–209. https://doi.org/10.1038/s43016‐021‐00225‐9
Xu X, Sharma P, Shu S, Lin TS, Ciais P, Tubiello FN, et al. Global greenhouse gas emissions from animal‐based foods are twice those of plant‐based foods. Nat Food. 2021;2(9):724–732. https://doi.org/10.1038/s43016‐021‐00358‐x
Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT‐Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–492. https://doi.org/10.1016/s0140‐6736(18)31788‐4
EAT‐Lancet Commission 2.0: securing a just transition to healthy, environmentally sustainable diets for all. Lancet 2023; 402: 352–354. https://doi.org/10.1016/s0140‐6736(23)01290‐4
Springmann M, Mason‐D'Croz D, Robinson S, et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet. 2016;387:1937–1946. https://doi.org/10.1016/s0140‐6736(15)01156‐3
Bui LP, Pham TT, Wang F, Chai B, Sun Q, Hu FB, et al. Planetary Health Diet Index and risk of total and cause‐specific mortality in three prospective cohorts. Am J Clin Nutr. 2024;120(1):80–91. https://doi.org/10.1016/j.ajcnut.2024.03.019
Donnelly L. Green endoscopy: practical implementation. Frontline Gastroenterol. 2022;13(e1):e7–e12. https://doi.org/10.1136/flgastro‐2022‐102116
Vaccari M, Tudor T, Perteghella A. Costs associated with the management of waste from healthcare facilities: an analysis at national and site level. Waste Manag Res. 2018;36(1):39–47. https://doi.org/10.1177/0734242x17739968
Namburar S, von Renteln D, Damianos J, Bradish L, Barrett J, Aguilera‐Fish A, et al. Estimating the environmental impact of disposable endoscopic equipment and endoscopes. Gut. 2022;71(7):1326–1331. https://doi.org/10.1136/gutjnl‐2021‐324729
Eckelman MJ, Sherman J. Environmental impacts of the U.S. Health care system and effects on public health. PLoS One. 2016;11(20160609):e0157014. https://doi.org/10.1371/journal.pone.0157014
Henniger D, Windsheimer M, Beck H, Brand M, Lux T, Hann A, et al. Assessment of the yearly carbon emission of a gastrointestinal endoscopy unit. Gut. 2023;72(10):1816–1818. https://doi.org/10.1136/gutjnl‐2023‐329940
Siau K, Hayee BH, Gayam S. Endoscopy's current carbon footprint. Tech Innov Gastrointest Endosc. 2021;23(4):344–352. https://doi.org/10.1016/j.tige.2021.06.005
Rodríguez de Santiago E, Dinis‐Ribeiro M, Pohl H, Agrawal D, Arvanitakis M, Baddeley R, et al. Reducing the environmental footprint of gastrointestinal endoscopy: European society of gastrointestinal endoscopy (ESGE) and European society of gastroenterology and endoscopy Nurses and Associates (ESGENA) position statement. Endoscopy. 2022;54(08):797–826. https://doi.org/10.1055/a‐1859‐3726
Sheffield KM, Han Y, Kuo Y.‐F, Riall TS, Goodwin JS. Potentially inappropriate screening colonoscopy in medicare patients: variation by physician and geographic region. JAMA Intern Med. 2013;173(7):542–550. https://doi.org/10.1001/jamainternmed.2013.2912
Elli L, La Mura S, Rimondi A, Scaramella L, Tontini GE, Monica F, et al. The carbon cost of inappropriate endoscopy. Gastrointest Endosc. 2024;99(2):137–145.e133. https://doi.org/10.1016/j.gie.2023.08.018
Sharif K, de Santiago ER, David P, Afek A, Gralnek IM, Ben‐Horin S, et al. Ecogastroenterology: cultivating sustainable clinical excellence in an environmentally conscious landscape. Lancet Gastroenterol Hepatol. 2024;9(6):550–563. https://doi.org/10.1016/s2468‐1253(23)00414‐4
Yong KK, He Y, Cheung HCA, Sriskandarajah R, Jenkins W, Goldin R, et al. Rationalising the use of specimen pots following colorectal polypectomy: a small step towards greener endoscopy. Frontline Gastroenterol. 2023;14(4):295–299. https://doi.org/10.1136/flgastro‐2022‐102231
de Jong D, Volkers A, de Ridder E, Neijenhuis M, Duijvestein M. Steps toward a greener endoscopy unit. Clin Gastroenterol Hepatol. 2023;21(11):2723–2726.e2722. https://doi.org/10.1016/j.cgh.2023.06.007
Henniger D, Lux T, Windsheimer M, Brand M, Weich A, Kudlich T, et al. Reducing scope 3 carbon emissions in gastrointestinal endoscopy: results of the prospective study of the 'Green Endoscopy Project Würzburg. Gut. 2024;73:442–447. https://doi.org/10.1136/gutjnl‐2023‐331024
Pal P, Mateen MA, Pooja K, Marri UK, Gupta R, Tandan M, et al. Leveraging existing mid‐end ultrasound machine for point‐of‐care intestinal ultrasound in low‐resource settings: prospective, real‐world impact on clinical decision‐making. Aliment Pharmacol Ther. 2024;60(5):20240708–20241647. https://doi.org/10.1111/apt.18155
de Franchis R, Bosch J, Garcia‐Tsao G, Reiberger T, Ripoll C, Abraldes JG, et al. Baveno VII ‐ renewing consensus in portal hypertension. J Hepatol. 2022;76(4):959–974. https://doi.org/10.1016/j.jhep.2021.12.022
Bentzer P, Talbot A, Hemberg L. Sustainability in anaesthesia and intensive care ‐ an obligation to turn danger into opportunity. Eur J Anaesthesiol. 2023;40(10):721–723. https://doi.org/10.1097/eja.0000000000001842
Gaetani M, Uleryk E, Halgren C, Maratta C. The carbon footprint of critical care: a systematic review. Intensive Care Med. 2024;50(5):731–745. https://doi.org/10.1007/s00134‐023‐07307‐1
McGain F, Burnham JP, Lau R, Aye L, Kollef MH, McAlister S. The carbon footprint of treating patients with septic shock in the intensive care unit. Crit Care Resusc. 2018;20(4):304–312. https://doi.org/10.1016/s1441‐2772(23)00970‐5
Drinhaus H, Schumacher C, Drinhaus J, Wetsch WA. W(h)at(t) counts in electricity consumption in the intensive care unit. Intensive Care Med. 2023;49(4):437–439. https://doi.org/10.1007/s00134‐023‐07013‐y
McGain F, McAlister S. Reusable versus single‐use ICU equipment: what's the environmental footprint? Intensive Care Med. 2023;49(12):1523–1525. https://doi.org/10.1007/s00134‐023‐07256‐9
Jayakrishnan T, Gordon IO, O'Keeffe S, Singh MK, Sehgal AR. The carbon footprint of health system employee commutes. The J Clim Change Health. 2023;11:100216. https://doi.org/10.1016/j.joclim.2023.100216
Bell KJL, Stancliffe R. Less is more for greener intensive care. Intensive Care Med. 2024;50(5):746–748. https://doi.org/10.1007/s00134‐024‐07378‐8
Rizan C, Bhutta MF. Strategy for net‐zero carbon surgery. Br J Surg. 2021;108(7):737–739. https://doi.org/10.1093/bjs/znab130
Shoham MA, Baker NM, Peterson ME, Fox P. The environmental impact of surgery: a systematic review. Surgery. 2022;172(3):897–905. https://doi.org/10.1016/j.surg.2022.04.010
Gasson S, Solari F, Jesudason EP. Sustainable hand surgery: incorporating water efficiency into clinical practice. Cureus. 2023;15:e38331. https://doi.org/10.7759/cureus.38331
McGain E, Hendel SA, Story DA. An audit of potentially recyclable waste from anaesthetic practice. Anaesth Intensive Care. 2009;37(5):820–823. https://doi.org/10.1177/0310057x0903700521
Milner J, Turner G, Ibbetson A, Eustachio Colombo P, Dangour AD, et al. Impact on mortality of pathways to net zero greenhouse gas emissions in England and Wales: a multisectoral modelling study. Lancet Planet Health. 2023;7(2):e128–e136. https://doi.org/10.1016/s2542‐5196(22)00310‐2
MacNeill AJ, McGain F, Sherman JD. Planetary health care: a framework for sustainable health systems. Lancet Planet Health. 2021;5(2):e66–e68. https://doi.org/10.1016/s2542‐5196(21)00005‐x
Chen‐Xu J, Kislaya I, Fernandes RM, Carvalho J, Blanco‐Rojas BJ, El‐Omrani O, et al. Interventions for increasing energy efficiency in hospitals. Cochrane Database Syst Rev. 2024;2024(3):20240305. https://doi.org/10.1002/14651858.Cd015693
Sebastian S, Dhar A, Baddeley R, et al. Green endoscopy: British society of gastroenterology (BSG), joint accreditation group (JAG) and centre for sustainable health (CSH) joint consensus on practical measures for environmental sustainability in endoscopy. Gut. 2023;72:12–26.
Carino S, Porter J, Malekpour S, Collins J. Environmental sustainability of hospital foodservices across the food supply chain: a systematic review. J Acad Nutr Diet. 2020;120(5):825–873. https://doi.org/10.1016/j.jand.2020.01.001
Gordon IO, Sherman JD, Leapman M, Overcash M, Thiel CL. Life cycle greenhouse gas emissions of gastrointestinal biopsies in a surgical pathology laboratory. Am J Clin Pathol. 2021;156(4):540–549. https://doi.org/10.1093/ajcp/aqab021
McAlister S, Grant T, McGain F. An LCA of hospital pathology testing. Int J Life Cycle Assess. 2021;26(9):1753–1763. https://doi.org/10.1007/s11367‐021‐01959‐1
McAlister S, McGain F, Petersen M, et al. The carbon footprint of hospital diagnostic imaging in Australia. Lancet Reg Health West Pac. 2022;24:100459. https://doi.org/10.1016/j.lanwpc.2022.100459
Martin M, Mohnke A, Lewis GM, Dunnick NR, Keoleian G, Maturen KE. Environmental impacts of abdominal imaging: a pilot investigation. J Am Coll Radiol. 2018;15(10):1385–1393. https://doi.org/10.1016/j.jacr.2018.07.015
Patel KB, Gonzalez BD, Turner K, Alishahi Tabriz A, Rollison DE, Robinson E, et al. Estimated carbon emissions savings with shifts from in‐person visits to telemedicine for patients with cancer. JAMA Netw Open. 2023;6(1):e2253788. https://doi.org/10.1001/jamanetworkopen.2022.53788
Lange O, Plath J, Dziggel TF, Karpa DF, Keil M, Becker T, et al. A transparency checklist for carbon footprint calculations applied within a systematic review of virtual care interventions. Int J Environ Res Public Health. 2022;19(12):20220618. https://doi.org/10.3390/ijerph19127474
Lahat A, Shatz Z. Telemedicine in clinical gastroenterology practice: what do patients prefer? Therap Adv Gastroenterol. 2021;14:20210211. https://doi.org/10.1177/1756284821989178
Hutchins DC, White SM. Coming round to recycling. Bmj. 2009;338(mar10 2):b609. https://doi.org/10.1136/bmj.b609
Kagoma YK, Stall N, Rubinstein E, Naudie D. People, planet and profits: the case for greening operating rooms. CMAJ (Can Med Assoc J). 2012;184(17):1905–1911. https://doi.org/10.1503/cmaj.112139
England NHS. Delivering a ‘net zero’ national health service. NHS England and NHS Improvement; 2022.
Sampath BJM, Lenoci‐Edwards J, Little K, Singh H, Sherman JD. Reducing healthcare carbon emissions: a primer on measures and actions for healthcare organizations to mitigate climate change. Prepared by Institute for Healthcare Improvement under Contract No 75Q80122P00007 2022; AHRQ Publication. p. 22.
WHO. Operational framework for building climate resilient and low carbon health systems. World Health Organization; 2023.