Effectiveness of self-etching bonding systems on dentin after radiotherapy: perspectives on microtensile and microshear bond strength.
Bond strength
Dentin
Dentin bonding agents
Radiotherapy
Journal
Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115
Informations de publication
Date de publication:
25 Oct 2024
25 Oct 2024
Historique:
received:
04
08
2024
accepted:
07
10
2024
medline:
25
10
2024
pubmed:
25
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Self-etching dental adhesives bond with dentin through chemical reactions with calcium. This study assessed bond strength (BS) using microtensile (µTBS) and microshear (µSBS) tests on sound and post-radiotherapy dentin, with dental adhesives containing different functional monomers. Sound dentin (SD) and post-radiotherapy irradiated dentin (ID) were tested with two adhesive systems: Clearfil SE Bond (SE, 10-MDP-based) and FL Bond II (FL, containing carboxylic and phosphonic monomers with S-PRG bioactive particles). The tests occurred initially (24 h) and six months later; fracture mode was also analyzed (40x). Ninety-six human molars were randomly assigned (n = 12), and half were irradiated with a 70 Gy radiation dose. For µTBS test, teeth were bonded, restored and sectioned them into beams (0.64 mm µTBS showed a significant substrate x adhesive interaction (p < 0.001), while µSBS was significant for all factors (p = 0.006). SE and FL performed better on SD and ID, respectively, in the µTBS test. As for µSBS, SE showed higher values on ID (p < 0.05). Lower BS values occurred for SD-FL and ID-SE after six months. Dental adhesive performance varied based on substrate type and test method. FL was more stable for ID in µTBS, while SE excelled in µSBS. As post-radiotherapy irradiated dentin becomes more vulnerable, self-etching systems based on functional monomer and bioactive ingredients may exhibit appropriate bonding to this altered substrate.
Identifiants
pubmed: 39453555
doi: 10.1007/s00784-024-05994-8
pii: 10.1007/s00784-024-05994-8
doi:
Substances chimiques
Dentin-Bonding Agents
0
Clearfil SE Bond
0
Resin Cements
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
611Subventions
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : Finance Code 001
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2019/20970-0 and 2021/06517-1
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 307792/2019-6 and 163902/2020-8
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Troconis CCM, Santos-Silva AR, Brandão TB, Lopes MA, Goes MF (2017) Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: a systematic review. Dent Mater 33(11):1229–1243. https://doi.org/10.1016/j.dental.2017.07.014
doi: 10.1016/j.dental.2017.07.014
Rodrigues RB, Soares CJ, Simamoto Junior PC, Lara VC, Arana-Chavez VE, Novais VR (2018) Influence of radiotherapy on the dentin properties and bond strength. Clin Oral Investig 22(2):875–883. https://doi.org/10.1007/s00784-017-2165-4
doi: 10.1007/s00784-017-2165-4
pubmed: 28776096
Velo MMAC, Farha ALH, Santos PSS, Sansavino SZ, Souza AT, Honório HM, Wang L (2018) Radiotherapy alters the composition, structural and mechanical properties of root dentin in vitro. Clin Oral Investig 22(8):2871–2878. https://doi.org/10.1007/s00784-018-2373-6
doi: 10.1007/s00784-018-2373-6
pubmed: 29430611
Cunha SR, Maravic T, Comba A, Ramos PA, Tay FR, Pashley DH, Fregnani ER, Aranha AC, Mazzoni A, Breschi L (2020) In vivo and in vitro radiotherapy increased dentin enzymatic activity. J Dent 100:103429. https://doi.org/10.1016/j.jdent.2020.103429
doi: 10.1016/j.jdent.2020.103429
pubmed: 32673637
Martini GR, Bortoluzzi EA, Minamisako MC, Bordignon NCT, Rodrigues PM, Gondak R (2023) Impact of radiotherapy on the morphological and compositional structure of intra-radicular dentin. Braz Dent J 34(1):45–51. https://doi.org/10.1590/0103-6440202305101
doi: 10.1590/0103-6440202305101
pubmed: 36888844
pmcid: 10027097
Pelloso AM, Rossi ME, Miranda RR, Soares CJ, Novais VR (2024) Radiotherapy in the head and neck region influences the chemical and mechanical properties of intraradicular dentin. Arch Oral Biol 158:105868. https://doi.org/10.1016/j.archoralbio.2023.105868
doi: 10.1016/j.archoralbio.2023.105868
pubmed: 38070323
Gonçalves LMN, Palma-Dibb RG, Paula-Silva FWG, De Oliveira HF, Nelson-Filho P, Da Silva LAB, De Queiroz AM (2014) Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth. J Dent 42(8):986–992. https://doi.org/10.1016/j.jdent.2014.05.011
doi: 10.1016/j.jdent.2014.05.011
pubmed: 24887361
Naves LZ, Novais VR, Armstrong SR, Correr-Sobrinho L, Soares CJ (2012) Effect of gamma radiation on bonding to human enamel and dentin. Support Care Cancer 20(11):2873–2878. https://doi.org/10.1007/s00520-012-1414-y
doi: 10.1007/s00520-012-1414-y
pubmed: 22415607
Yadav S, Yadav H (2013) Ionizing radiation affects the microtensile resin dentin bond strength under simulated clinical conditions. J Conserv Dent 16(2):148–151. https://doi.org/10.4103/0972-0707.108198
doi: 10.4103/0972-0707.108198
pubmed: 23716968
pmcid: 3659861
Giacomini MC, Scaffa PMC, Gonçalves RS, Jacomine JC, Zabeu GS, Carrilho MRO, Honório HM, Wang L (2021) Performance of MDP-based system in eroded and carious dentin associated with proteolytic inhibitors: 18-Month exploratory study. J Mech Behav Biomed Mater 114:104177. https://doi.org/10.1016/j.jmbbm.2020.104177
doi: 10.1016/j.jmbbm.2020.104177
pubmed: 33168489
Jacomine JC, Giacomini MC, Agulhari MAS, Honório HM, Wang L (2023) Twenty-month performance of a universal bonding system on simulated-challenged dentin substrates pretreated with chlorhexidine. Oper Dent 48(2):196–206. https://doi.org/10.2341/21-142-L
doi: 10.2341/21-142-L
pubmed: 36656311
Perdigão J, Araujo E, Ramos RQ, Gomes G, Pizzolotto L (2021) Adhesive dentistry: current concepts and clinical considerations. J Esthet Restor Dent 33(1):51–68. https://doi.org/10.1111/jerd.12692
Van Meerbeek B, De Munck J, Mattar D, Van Landuyt K, Lambrechts P (2003) Microtensile bond strengths of an etch&rinse and self-etch adhesive to enamel and dentin as a function of surface treatment. Oper Dent 28(5):647–660
pubmed: 14531614
Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL (2011) State of the art of self-etch adhesives. Dent Mater 27(1):17–28. https://doi.org/10.1016/j.dental.2010.10.023
doi: 10.1016/j.dental.2010.10.023
pubmed: 21109301
Pashley DH, Tay FR, Breschi L, Tjaderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A (2011) State of the art etch-and-rinse adhesives. Dent Mater 27(1):1–16. https://doi.org/10.1016/j.dental.2010.10.016
doi: 10.1016/j.dental.2010.10.016
pubmed: 21112620
Peumans M, De Munck J, Mine A, Van Meerbeek B (2014) Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent Mater 30(10):1089–1103. https://doi.org/10.1016/j.dental.2014.07.007
doi: 10.1016/j.dental.2014.07.007
pubmed: 25091726
Shofu (2024) http://www.shofu.com/en/products/restoratives . Accessed 10 April 2024
Fujimoto Y, Iwasa M, Murayama R, Miyazaki M, Nagafuji A, Nakatsuka T (2010) Detection of ions released from S-PRG fillers and their modulation effect. Dent Mater J 29(4):392–397. https://doi.org/10.4012/dmj.2010-015
doi: 10.4012/dmj.2010-015
pubmed: 20610878
Bergantin BTP, Di Leone CC, Cruvinel T, Wang L, Buzalaf MAR, Borges AB, Honório HM, Rios D (2022) S-PRG-based composites erosive wear resistance and the effect on surrounding enamel. Sci Rep 12(1):833. https://doi.org/10.1038/s41598-021-03745-3
doi: 10.1038/s41598-021-03745-3
pubmed: 35039516
pmcid: 8764067
Armstrong S, Breschi L, Ozcan M, Pfefferkorn F, Ferrari M, Van Meerbeek B (2017) Academy of Dental materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (µTBS) approach. Dent Mater 33(2):133–143. https://doi.org/10.1016/j.dental.2016.11.015
doi: 10.1016/j.dental.2016.11.015
pubmed: 28007396
Loguercio AD, Uceda-Gomez N, Carrilho MR, Reis A (2005) Influence of specimen size and regional variation on long-term resin-dentin bond strength. Dent Mater 21(3):224–231. https://doi.org/10.1016/j.dental.2004.03.012
doi: 10.1016/j.dental.2004.03.012
pubmed: 15705429
Neves TC, Presoto CD, Wajngarten D, Campos EA (2020) Micro-shear bond strength of adhesives with different degrees of acidity: Effect on sound and artificially hypermineralized dentin. Microsc Res Tech 83(4):393–401. https://doi.org/10.1002/jemt.23426
doi: 10.1002/jemt.23426
pubmed: 31868286
Lieshout HFJ, Bots CP (2014) The effect of radiotherapy on dental hard tissue–a systematic review. Clin Oral Investig 18(1):17–24. https://doi.org/10.1007/s00784-013-1034-z
doi: 10.1007/s00784-013-1034-z
pubmed: 23873320
Harrington K, Jankowska P, Hingorani M (2007) Molecular biology for the radiation oncologist: the 5Rs of radiobiology meet the hallmarks of cancer. Clin Oncol (R Coll Radiol) 19(8):561–571. https://doi.org/10.1016/j.clon.2007.04.009
Souza BM, Francisco EL, Braga AS, Santos PSDS, Buzalaf MAR, Magalhães AC (2024) In vitro effect of TiF4/NaF solution on the development of radiation-induced dentin caries. J Appl Oral Sci 2432:e20240024. https://doi.org/10.1590/1678-7757-2024-0024
doi: 10.1590/1678-7757-2024-0024
Armstrong S, Geraldeli S, Maia R, Raposo LHA, Soares CJ, Yamagawa J (2010) Adhesion to tooth structure: a critical review of micro bond strength test methods. Dent Mater 26(2):e50–e62. https://doi.org/10.1016/j.dental.2009.11.155
doi: 10.1016/j.dental.2009.11.155
pubmed: 20045179
Oliveira B, Ubaldini A, Baesso ML, Andrade L, Lima SM, Giannini M, Hernandes L, Pascotto RC (2018) Chemical interaction and interface analysis of self-etch adhesives containing 10-MDP and methacrylamide with the dentin in noncarious cervical lesions. Oper Dent 43(5):E253–E265. https://doi.org/10.2341/17-366-L
Oliveira B, Ulbaldini A, Sato F, Baesso ML, Bento AC, Andrade L, Lima SM, Pascotto RC (2017) Chemical interaction analysis of an adhesive containing 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP) with the dentin in noncarious cervical lesions. Oper Dent 42(4):357–366. https://doi.org/10.2341/16-062-L
Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H, Inoue S, Tagawa Y, Suz K, De Munck J, Van Meerbeek B (2004) Comparative study on adhesive performance of functional monomers. J Dent Res 83(6):454–458. https://doi.org/10.1177/154405910408300604
doi: 10.1177/154405910408300604
pubmed: 15153451
Fehrenbach J, Isolan CP, Münchow EA (2021) Is the presence of 10-MDP associated to higher bonding performance for self-etching adhesive systems? A meta-analysis of in vitro studies. Dent Mater 37(10):1463–1485. https://doi.org/10.1016/j.dental.2021.08.014
doi: 10.1016/j.dental.2021.08.014
pubmed: 34456050
Ikemura K, Kadoma Y, Endo T (2011) A review of the developments of self-etching primers and adhesives - effects of acidic adhesive monomers and polymerization initiators on bonding to ground, smear layer-covered teeth. Dent Mater 30(6):769–789. https://doi.org/10.4012/dmj.2011-110
Ikemura K, Tay FR, Kouro Y, Endo T, Yoshiyama M, Miyai K, Pashley DH (2003) Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers. Dent Mater 19(2):137–146. https://doi.org/10.1016/s0109-5641(02)00022-2
doi: 10.1016/s0109-5641(02)00022-2
pubmed: 12543119
Ilda Y, Nikaido T, Kitayama S, Takagaki T, Inoue G, Ikeda M, Foxton RM, Tagami J (2009) Evaluation of dentin bonding performance and acid-base resistance of the interface of two-step self-etching adhesive systems. Dent Mater J 28(4):493–500. https://doi.org/10.4012/dmj.28.493
doi: 10.4012/dmj.28.493
Ikemura K, Tay FR, Endo T, Pashley DH (2008) A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dent Mater J 27(3):315–339. https://doi.org/10.4012/dmj.27.315
doi: 10.4012/dmj.27.315
pubmed: 18717159
Ikemura K, Tay FR, Nishiyama N, Pashley DH, Endo T (2007) Multi-purpose bonding performance of newly synthesized phosphonic acid monomers. Dent Mater J 26(1):105–115. https://doi.org/10.4012/dmj.26.105
doi: 10.4012/dmj.26.105
pubmed: 17410900
Mendes Soares IP, Anselmi C, Guiné I, Fernandes LO, Pires MLBA, de Souza Costa CA, Scheffel DLS, Hebling J (2022) Inhibitory activity of S-PRG filler on collagen-bound MMPs and dentin matrix degradation. J Dent 124:104237. https://doi.org/10.1016/j.jdent.2022.104237
doi: 10.1016/j.jdent.2022.104237
pubmed: 35863550