Analyzing and forecasting air pollution concentration in the capital and Southern Thailand using a lag-dependent Gaussian process model.


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
26 Oct 2024
Historique:
received: 19 05 2024
accepted: 16 10 2024
medline: 26 10 2024
pubmed: 26 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

The air pollution problem has now amassed worldwide attention due to its multifaceted harm to human health. Exploring the concentration of air pollution and improving forecast have important consideration worldwide. In this research, we analyze the air pollution concentration of Southern Thailand and compare it with the central region. Also, we proposed a methodology based on the lag-dependent Gaussian process (LDGP), a Bayesian non-parametric machine learning model, with a stable optimization approach, which is a cluster-based multi-starter technique based on the Nelder-Mead optimizer. This model also provides the confidence band for forecasted values. We also used autoregressive deep neural network (AR-DNN), autoregressive random forest (AR-RF), gradient boosting (GB), and K-nearest neighbors (KNN) models. A comparison of the proposed methodology was performed on the daily air pollution data collected from the southern provinces and also from the capital of Thailand from 1 January 2018 to 31 December 2022. We used well-established performance evaluation measures to compare the performance of the models. To evaluate the bias due to overfit, we performed a tenfold cross-validation for all the pollutants in each region and compared the models to choose the best one. Moreover, we explored the concentration of air pollution in these regions. Results of descriptive analysis revealed that Bangkok had a much higher concentration of air pollution as compared to the southern region. However, the southern region had higher exposure to PM air pollutants as per WHO recommendations and also had higher exposure to O

Identifiants

pubmed: 39455462
doi: 10.1007/s10661-024-13275-w
pii: 10.1007/s10661-024-13275-w
doi:

Substances chimiques

Air Pollutants 0
Particulate Matter 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1106

Subventions

Organisme : Prince of Songkla University
ID : Postdoc Fellowship
Organisme : Ministry of Higher Education, Science, Research and Innovation, Thailand
ID : SAT6601245S

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Amnuaylojaroen, T. (2022). Prediction of PM2.5 in an urban area of Northern Thailand using multivariate linear regression model. Advances in Meteorology, 2022, 1–9.
doi: 10.1155/2022/3190484
Bekkar, A., Hssina, B., Douzi, S., & Douzi, K. (2021). Air-pollution prediction in smart city deep learning approach. Journal of Big Data, 8(1), 1–21.
doi: 10.1186/s40537-021-00548-1
Buya, S., Lim, A., Saelim, R., Musikasuwan, S., Choosong, T., & Taneepanichskul, N. (2024). Impact of air pollution on cardiorespiratory morbidities in Southern Thailand. Clinical Epidemiology and Global Health, 25, 101501.
doi: 10.1016/j.cegh.2023.101501
Chang, Y. S., Chiao, H. T., Abimannan, S., Huang, Y. P., Tsai, Y. T., & Lin, K. M. (2020). An LSTM-based aggregated model for air pollution forecasting. Atmospheric Pollution Research, 11(8), 1451–1463.
doi: 10.1016/j.apr.2020.05.015
Cooper, K. W., Meeyai, A., Worakhunpiset, S., & Tantrakarnapa, K. (2018). Relationships between meteorological parameters and particulate matter in Mae Hong Son province Thailand. International Journal of Environmental Research and Public Health, 15(12), 2801.
doi: 10.3390/ijerph15122801
Cortes, T. R., Silveira, I. H., de Oliveira, B. F. A., Bell, M. L., & Junger, W. L. (2023). Short-term association between ambient air pollution and cardio-respiratory mortality in Rio de Janeiro Brazil. PLoS ONE, 18(2), e0281499.
doi: 10.1371/journal.pone.0281499
Flanagan, E., Malmqvist, E., Rittner, R., Gustafsson, P., Källén, K., & Oudin, A. (2023). Exposure to local source-specific ambient air pollution during pregnancy and autism in children: A cohort study from southern Sweden. Scientific Reports, 13(1), 3848.
doi: 10.1038/s41598-023-30877-5
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.
doi: 10.1214/aos/1013203451
Gramacy, R. B. (2020). Surrogates: Gaussian process modeling design and optimization for the applied sciences. CRC Press.
doi: 10.1201/9780367815493
Harishkumar, K. S., Yogesh, K. M., & Gad, I. (2020). Forecasting air pollution particulate matter (PM2.5) using machine learning regression models. Procedia Computer Science, 171, 2057–2066.
doi: 10.1016/j.procs.2020.04.221
Khurram, H. (2021). Bayesian non-parametric modelling (Publication No. 2478) [Doctoral Dissertation Bahauddin Zakariya University]. Pakistan Research Repository. http://prr.hec.gov.pk/jspui/handle/123456789/19327. Accessed 3 Feb 2024.
Kliengchuay, W., Srimanus, R., Srimanus, W., Niampradit, S., Preecha, N., Mingkhwan, R., & Tantrakarnapa, K. (2021). Particulate matter (PM10) prediction based on multiple linear regression: A case study in Chiang Rai province Thailand. BMC Public Health, 21, 1–9.
doi: 10.1186/s12889-021-12217-2
Kliengchuay, W., Worakhunpiset, S., Limpanont, Y., Meeyai, A. C., & Tantrakarnapa, K. (2021). Influence of the meteorological conditions and some pollutants on PM10 concentrations in Lamphun Thailand. Journal of Environmental Health Science and Engineering, 19, 237–249.
doi: 10.1007/s40201-020-00598-2
Koo, J. W., Wong, S. W., Selvachandran, G., Long, H. V., & Son, L. H. (2020). Prediction of air pollution index in Kuala Lumpur using fuzzy time series and statistical models. Air Quality Atmosphere & Health, 13, 77–88.
doi: 10.1007/s11869-019-00772-y
Leong, W. C., Kelani, R. O., & Ahmad, Z. (2020). Prediction of air pollution index (API) using support vector machine (SVM). Journal of Environmental Chemical Engineering, 8(3), 103208.
doi: 10.1016/j.jece.2019.103208
Maghsoodi, A. I., Torkayesh, A. E., Wood, L. C., Herrera-Viedma, E., & Govindan, K. (2023). A machine learning driven multiple criteria decision analysis using LS-SVM feature elimination: Sustainability performance assessment with incomplete data. Engineering Applications of Artificial Intelligence, 119, 105785.
doi: 10.1016/j.engappai.2022.105785
Mueller, W., Loh, M., Vardoulakis, S., Johnston, H. J., Steinle, S., Precha, N., & Cherrie, J. W. (2020). Ambient particulate matter and biomass burning: An ecological time series study of respiratory and cardiovascular hospital visits in Northern Thailand. Environmental Health, 19(1), 1–12.
doi: 10.1186/s12940-020-00629-3
Mueller, W., Vardoulakis, S., Steinle, S., Loh, M., Johnston, H. J., Precha, N., & Cherrie, J. W. (2021). A health impact assessment of long-term exposure to particulate air pollution in Thailand. Environmental Research Letters, 16(5), 055018.
doi: 10.1088/1748-9326/abe3ba
National Statistical Office. (2022). Demography population and housing branch department of Provincial Administration Ministry of Interior Thailand.
O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal of the Royal Statistical Society: Series B (Methodological), 40(1), 1–24.
doi: 10.1111/j.2517-6161.1978.tb01643.x
Omar, A. B., Huang, S., Salameh, A. A., Khurram, H., & Fareed, M. (2022). Stock market forecasting using the random forest and deep neural network models before and during the COVID-19 period. Frontiers in Environmental Science, 10, 907.
doi: 10.3389/fenvs.2022.917047
Rotjanabumrung, M., Phosri, A., Sihabut, T., & Neamhom, T. (2023). Short-term effects of biomass open burning related air pollution on outpatient department visits for cardiovascular and respiratory diseases in Thailand. Stochastic Environmental Research and Risk Assessment, 37, 2885–2895.
doi: 10.1007/s00477-023-02424-1
Sicard, P., Agathokleous, E., Anenberg, S. C., de Marco, A., Paoletti, E., & Calatayud, V. (2023). Trends in urban air pollution over the last two decades: A global perspective. Science of The Total Environment, 858, 160064.
doi: 10.1016/j.scitotenv.2022.160064
Sim, S., Park, J. H., & Bae, H. (2022). Deep collaborative learning model for port-air pollutants prediction using automatic identification system. Transportation Research Part D: Transport and Environment, 111, 103431.
doi: 10.1016/j.trd.2022.103431
Son, R., Stratoulias, D., Kim, H. C., & Yoon, J. H. (2023). Estimation of surface PM2.5 concentrations from atmospheric gas species retrieved from TROPOMI using deep learning: Impacts of fire on air pollution over Thailand. Atmospheric Pollution Research, 14(10), 101875.
doi: 10.1016/j.apr.2023.101875
Thongthammachart, T., Shimadera, H., Araki, S., Matsuo, T., & Kondo, A. (2023). Land use regression model established using light gradient boosting machine incorporating the WRF/CMAQ model for highly accurate spatiotemporal PM2.5 estimation in the central region of Thailand. Atmospheric Environment, 297, 119595.
doi: 10.1016/j.atmosenv.2023.119595
Tongprasert, P., & Ongsomwang, S. (2022). A suitable model for spatiotemporal particulate matter concentration prediction in rural and urban landscapes Thailand. Atmosphere, 13(6), 904.
doi: 10.3390/atmos13060904
WHO (2019) Air Pollution. Available Online: https://www.who.int/health-topics/air-pollution (accessed on 27 January 2024)
Williams C. K. & Rasmussen C. E. (2006). Gaussian processes for machine learning vol. 2. MIT Press Cambridge MA 493 494.

Auteurs

Haris Khurram (H)

Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand. hariskhurram2@gmail.com.

Apiradee Lim (A)

Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand. apiradee.s@psu.ac.th.
Air Pollution and Health Effect Research Center, Prince of Songkla University, Songkhla, 90110, Thailand. apiradee.s@psu.ac.th.

Articles similaires

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
Humans Immunization, Secondary COVID-19 Vaccines COVID-19 SARS-CoV-2

Classifications MeSH