Development of a high-throughput screening system targeting the protein-protein interactions between PRL and CNNM.
Compound screening
Cyclin M (CNNM)
HTRF)
Homogenous time-resolved fluorescence resonance energy transfer (HTR-FRET
Phosphatase of regenerating liver (PRL)
Protein-protein interaction (PPI)
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Oct 2024
25 Oct 2024
Historique:
received:
20
07
2024
accepted:
11
10
2024
medline:
26
10
2024
pubmed:
26
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Phosphatase of regenerating liver (PRL) is an oncogenic protein that promotes tumor progression by directly binding to cyclin M (CNNM) membrane proteins and inhibiting their Mg
Identifiants
pubmed: 39455715
doi: 10.1038/s41598-024-76269-1
pii: 10.1038/s41598-024-76269-1
doi:
Substances chimiques
Protein Tyrosine Phosphatases
EC 3.1.3.48
PTP4A3 protein, human
EC 3.1.3.48
Magnesium
I38ZP9992A
Neoplasm Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25432Subventions
Organisme : Japan Society for the Promotion of Science
ID : JP17K19396
Organisme : Japan Society for the Promotion of Science
ID : JP21H05272
Organisme : Japan Science and Technology Corporation
ID : JPMJFR216A
Organisme : Japan Agency for Medical Research and Development
ID : JP23ama121054
Informations de copyright
© 2024. The Author(s).
Références
Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S. & Taub, R. PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol. Cell. Biol. 14, 3752–3762 (1994).
pubmed: 8196618
pmcid: 358742
Saha, S. et al. A phosphatase associated with metastasis of colorectal cancer. Science 294, 1343–1346 (2001).
doi: 10.1126/science.1065817
pubmed: 11598267
Bessette, D. C., Qiu, D. & Pallen, C. J. PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev. 27, 231–252 (2008).
doi: 10.1007/s10555-008-9121-3
pubmed: 18224294
Al-Aidaroos, A. Q. & Zeng, Q. PRL-3 phosphatase and cancer metastasis. J. Cell. Biochem. 111, 1087–1098 (2010).
doi: 10.1002/jcb.22913
pubmed: 21053359
Kozlov, G. et al. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J. Biol. Chem. 279, 11882–11889 (2004).
doi: 10.1074/jbc.M312905200
pubmed: 14704153
Guan, K. L. & Dixon, J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J. Biol. Chem. 266, 17026–17030 (1991).
doi: 10.1016/S0021-9258(19)47335-3
pubmed: 1654322
Gulerez, I. et al. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep. 17, 1890–1900 (2016).
doi: 10.15252/embr.201643393
pubmed: 27856537
pmcid: 5283600
Funato, Y. et al. Membrane protein CNNM4-dependent Mg
doi: 10.1172/JCI76614
pubmed: 25347473
pmcid: 4348944
Hardy, S. et al. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene 34, 986–995 (2015).
doi: 10.1038/onc.2014.33
pubmed: 24632616
Funato, Y. & Miki, H. Molecular function and biological importance of CNNM family Mg
doi: 10.1093/jb/mvy095
pubmed: 30476181
Chen, Y. S. & Gehring, K. New insights into the structure and function of CNNM proteins. FEBS J. 290, 5475–5495 (2023).
doi: 10.1111/febs.16872
pubmed: 37222397
Yamazaki, D. et al. Basolateral Mg
doi: 10.1371/journal.pgen.1003983
pubmed: 24339795
pmcid: 3854942
Hirata, Y., Funato, Y., Takano, Y. & Miki, H. Mg
doi: 10.1074/jbc.M114.551176
pubmed: 24706765
pmcid: 4031528
Yamazaki, D. et al. Cnnm4 deficiency suppresses Ca
doi: 10.1038/s41388-019-0682-0
pubmed: 30670776
Funato, Y. et al. The oncogenic PRL protein causes acid addiction of cells by stimulating Lysosomal Exocytosis. Dev. Cell. 55, 387–397 (2020).
doi: 10.1016/j.devcel.2020.08.009
pubmed: 32918875
Kozlov, G. et al. PRL3 pseudophosphatase activity is necessary and sufficient to promote metastatic growth. J. Biol. Chem. 295, 11682–11692 (2020).
doi: 10.1074/jbc.RA120.014464
pubmed: 32571875
pmcid: 7450121
Kostantin, E. et al. Inhibition of PRL-2·CNNM3 protein complex formation decreases breast cancer proliferation and tumor growth. J. Biol. Chem. 291, 10716–10725 (2016).
doi: 10.1074/jbc.M115.705863
pubmed: 26969161
pmcid: 4865918
Daouti, S. et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res. 68, 1162–1169 (2008).
doi: 10.1158/0008-5472.CAN-07-2349
pubmed: 18281492
Zhang, Z., Kozlov, G., Chen, Y. S. & Gehring, K. Mechanism of thienopyridone and iminothienopyridinedione inhibition of protein phosphatases. Medchemcomm 10, 791 – 799 (2019).
Cai, F. et al. A FRET-based screening method to detect potential inhibitors of the binding of CNNM3 to PRL2. Sci. Rep. 10, 12879 (2020).
doi: 10.1038/s41598-020-69818-x
pubmed: 32733084
pmcid: 7393355
Degorce, F. et al. HTRF: a technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr. Chem. Genomics 3, 22–32 (2009).
doi: 10.2174/1875397300903010022
pubmed: 20161833
pmcid: 2802762
Newton, P., Harrison, P. & Clulow, S. A novel method for determination of the affinity of protein: protein interactions in homogeneous assays. J. Biomol. Screen. 13, 674–682 (2008).
doi: 10.1177/1087057108321086
pubmed: 18626116
Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).
doi: 10.1177/108705719900400206
pubmed: 10838414
Iversen, P. W. et al. HTS assay validation in Assay Guidance Manual (ed. Markossian, S. et al.) (Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2012). (2004).
de Souza-Pinto, N. C., Vercesi, A. E. & Hoffmann, M. E. Mechanism of tetrahydroxy-1,4-quinone cytotoxicity: involvement of CA
doi: 10.1016/0891-5849(95)02179-5
pubmed: 8721612
Salamoun, J. M. et al. Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor. Org. Biomol. Chem. 14, 6398–6402 (2016).
doi: 10.1039/C6OB00946H
pubmed: 27291491
pmcid: 4935606
Protti, Í. F. et al. Do drug-likeness rules apply to oral prodrugs? Chem. Med. Chem. 16, 1446 – 1456 (2021).
Artursson, P. & Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175, 880–885 (1991).
doi: 10.1016/0006-291X(91)91647-U
pubmed: 1673839
Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014).
doi: 10.1016/j.chembiol.2014.09.001
pubmed: 25237857
pmcid: 4179228
Bakan, A., Lazo, J. S., Wipf, P., Brummond, K. M. & Bahar, I. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Curr. Med. Chem. 15, 2536–2544 (2008).
doi: 10.2174/092986708785909003
pubmed: 18855677
pmcid: 2764859
Lamoree, B. & Hubbard, R. E. Current perspectives in fragment-based lead discovery (FBLD). Essays Biochem. 61, 453 – 464 (2017).
Sperandio, O., Reynès, C. H., Camproux, A. C. & Villoutreix, B. O. Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov. Today 15, 220–229 (2010).
doi: 10.1016/j.drudis.2009.11.007
pubmed: 19969101
Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).
doi: 10.1021/jacs.8b13178
pubmed: 30768253
Funato, Y. & Miki, H. The emerging roles and therapeutic potential of cyclin M/CorC family of Mg
doi: 10.1016/j.jphs.2021.09.004
pubmed: 34924118
Stuiver, M. et al. CNNM2, encoding a basolateral protein required for renal Mg
Arjona, F. J. et al. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet. 10, e1004267 (2014).
doi: 10.1371/journal.pgen.1004267
pubmed: 24699222
pmcid: 3974678
Polok, B. et al. Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am. J. Hum. Genet. 84, 259–265 (2009).
doi: 10.1016/j.ajhg.2009.01.006
pubmed: 19200527
pmcid: 2668018
Parry, D. A. et al. Mutations in CNNM4 cause jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am. J. Hum. Genet. 84, 266–273 (2009).
doi: 10.1016/j.ajhg.2009.01.009
pubmed: 19200525
pmcid: 2668026
Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).
doi: 10.1038/ng.384
pubmed: 19430479
pmcid: 2998712
The international consortium for blood pressure genome-wide association studies. genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
doi: 10.1038/nature10405
pmcid: 3340926
Schizophrenia psychiatric genome-wide association study (GWAS) consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).
doi: 10.1038/ng.940
Thyme, S. B. et al. Phenotypic landscape of Schizophrenia-associated genes defines candidates and their shared functions. Cell 177, 478–491 (2019).
doi: 10.1016/j.cell.2019.01.048
pubmed: 30929901
pmcid: 6494450
Zhu, X. et al. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nat. Neurosci. 24, 186–196 (2021).
doi: 10.1038/s41593-020-00767-4
pubmed: 33432196
pmcid: 8806165
Ishii, T., Funato, Y. & Miki, H. Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL). J. Biol. Chem. 288, 7263–7270 (2013).
doi: 10.1074/jbc.M112.418004
pubmed: 23362275
pmcid: 3591634
Hagihara, K. et al. Gosha-Jinki-Gan (GJG) shows anti-aging effects through suppression of TNF-α production by Chikusetsusaponin V. Gene. 815, 146178 (2022).
doi: 10.1016/j.gene.2021.146178
pubmed: 34995733