Development of a high-throughput screening system targeting the protein-protein interactions between PRL and CNNM.

Compound screening Cyclin M (CNNM) HTRF) Homogenous time-resolved fluorescence resonance energy transfer (HTR-FRET Phosphatase of regenerating liver (PRL) Protein-protein interaction (PPI)

Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 Oct 2024
Historique:
received: 20 07 2024
accepted: 11 10 2024
medline: 26 10 2024
pubmed: 26 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

Phosphatase of regenerating liver (PRL) is an oncogenic protein that promotes tumor progression by directly binding to cyclin M (CNNM) membrane proteins and inhibiting their Mg

Identifiants

pubmed: 39455715
doi: 10.1038/s41598-024-76269-1
pii: 10.1038/s41598-024-76269-1
doi:

Substances chimiques

Protein Tyrosine Phosphatases EC 3.1.3.48
PTP4A3 protein, human EC 3.1.3.48
Magnesium I38ZP9992A
Neoplasm Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25432

Subventions

Organisme : Japan Society for the Promotion of Science
ID : JP17K19396
Organisme : Japan Society for the Promotion of Science
ID : JP21H05272
Organisme : Japan Science and Technology Corporation
ID : JPMJFR216A
Organisme : Japan Agency for Medical Research and Development
ID : JP23ama121054

Informations de copyright

© 2024. The Author(s).

Références

Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S. & Taub, R. PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol. Cell. Biol. 14, 3752–3762 (1994).
pubmed: 8196618 pmcid: 358742
Saha, S. et al. A phosphatase associated with metastasis of colorectal cancer. Science 294, 1343–1346 (2001).
doi: 10.1126/science.1065817 pubmed: 11598267
Bessette, D. C., Qiu, D. & Pallen, C. J. PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev. 27, 231–252 (2008).
doi: 10.1007/s10555-008-9121-3 pubmed: 18224294
Al-Aidaroos, A. Q. & Zeng, Q. PRL-3 phosphatase and cancer metastasis. J. Cell. Biochem. 111, 1087–1098 (2010).
doi: 10.1002/jcb.22913 pubmed: 21053359
Kozlov, G. et al. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J. Biol. Chem. 279, 11882–11889 (2004).
doi: 10.1074/jbc.M312905200 pubmed: 14704153
Guan, K. L. & Dixon, J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J. Biol. Chem. 266, 17026–17030 (1991).
doi: 10.1016/S0021-9258(19)47335-3 pubmed: 1654322
Gulerez, I. et al. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep. 17, 1890–1900 (2016).
doi: 10.15252/embr.201643393 pubmed: 27856537 pmcid: 5283600
Funato, Y. et al. Membrane protein CNNM4-dependent Mg
doi: 10.1172/JCI76614 pubmed: 25347473 pmcid: 4348944
Hardy, S. et al. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene 34, 986–995 (2015).
doi: 10.1038/onc.2014.33 pubmed: 24632616
Funato, Y. & Miki, H. Molecular function and biological importance of CNNM family Mg
doi: 10.1093/jb/mvy095 pubmed: 30476181
Chen, Y. S. & Gehring, K. New insights into the structure and function of CNNM proteins. FEBS J. 290, 5475–5495 (2023).
doi: 10.1111/febs.16872 pubmed: 37222397
Yamazaki, D. et al. Basolateral Mg
doi: 10.1371/journal.pgen.1003983 pubmed: 24339795 pmcid: 3854942
Hirata, Y., Funato, Y., Takano, Y. & Miki, H. Mg
doi: 10.1074/jbc.M114.551176 pubmed: 24706765 pmcid: 4031528
Yamazaki, D. et al. Cnnm4 deficiency suppresses Ca
doi: 10.1038/s41388-019-0682-0 pubmed: 30670776
Funato, Y. et al. The oncogenic PRL protein causes acid addiction of cells by stimulating Lysosomal Exocytosis. Dev. Cell. 55, 387–397 (2020).
doi: 10.1016/j.devcel.2020.08.009 pubmed: 32918875
Kozlov, G. et al. PRL3 pseudophosphatase activity is necessary and sufficient to promote metastatic growth. J. Biol. Chem. 295, 11682–11692 (2020).
doi: 10.1074/jbc.RA120.014464 pubmed: 32571875 pmcid: 7450121
Kostantin, E. et al. Inhibition of PRL-2·CNNM3 protein complex formation decreases breast cancer proliferation and tumor growth. J. Biol. Chem. 291, 10716–10725 (2016).
doi: 10.1074/jbc.M115.705863 pubmed: 26969161 pmcid: 4865918
Daouti, S. et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res. 68, 1162–1169 (2008).
doi: 10.1158/0008-5472.CAN-07-2349 pubmed: 18281492
Zhang, Z., Kozlov, G., Chen, Y. S. & Gehring, K. Mechanism of thienopyridone and iminothienopyridinedione inhibition of protein phosphatases. Medchemcomm 10, 791 – 799 (2019).
Cai, F. et al. A FRET-based screening method to detect potential inhibitors of the binding of CNNM3 to PRL2. Sci. Rep. 10, 12879 (2020).
doi: 10.1038/s41598-020-69818-x pubmed: 32733084 pmcid: 7393355
Degorce, F. et al. HTRF: a technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr. Chem. Genomics 3, 22–32 (2009).
doi: 10.2174/1875397300903010022 pubmed: 20161833 pmcid: 2802762
Newton, P., Harrison, P. & Clulow, S. A novel method for determination of the affinity of protein: protein interactions in homogeneous assays. J. Biomol. Screen. 13, 674–682 (2008).
doi: 10.1177/1087057108321086 pubmed: 18626116
Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).
doi: 10.1177/108705719900400206 pubmed: 10838414
Iversen, P. W. et al. HTS assay validation in Assay Guidance Manual (ed. Markossian, S. et al.) (Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2012). (2004).
de Souza-Pinto, N. C., Vercesi, A. E. & Hoffmann, M. E. Mechanism of tetrahydroxy-1,4-quinone cytotoxicity: involvement of CA
doi: 10.1016/0891-5849(95)02179-5 pubmed: 8721612
Salamoun, J. M. et al. Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor. Org. Biomol. Chem. 14, 6398–6402 (2016).
doi: 10.1039/C6OB00946H pubmed: 27291491 pmcid: 4935606
Protti, Í. F. et al. Do drug-likeness rules apply to oral prodrugs? Chem. Med. Chem. 16, 1446 – 1456 (2021).
Artursson, P. & Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175, 880–885 (1991).
doi: 10.1016/0006-291X(91)91647-U pubmed: 1673839
Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014).
doi: 10.1016/j.chembiol.2014.09.001 pubmed: 25237857 pmcid: 4179228
Bakan, A., Lazo, J. S., Wipf, P., Brummond, K. M. & Bahar, I. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Curr. Med. Chem. 15, 2536–2544 (2008).
doi: 10.2174/092986708785909003 pubmed: 18855677 pmcid: 2764859
Lamoree, B. & Hubbard, R. E. Current perspectives in fragment-based lead discovery (FBLD). Essays Biochem. 61, 453 – 464 (2017).
Sperandio, O., Reynès, C. H., Camproux, A. C. & Villoutreix, B. O. Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov. Today 15, 220–229 (2010).
doi: 10.1016/j.drudis.2009.11.007 pubmed: 19969101
Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).
doi: 10.1021/jacs.8b13178 pubmed: 30768253
Funato, Y. & Miki, H. The emerging roles and therapeutic potential of cyclin M/CorC family of Mg
doi: 10.1016/j.jphs.2021.09.004 pubmed: 34924118
Stuiver, M. et al. CNNM2, encoding a basolateral protein required for renal Mg
Arjona, F. J. et al. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet. 10, e1004267 (2014).
doi: 10.1371/journal.pgen.1004267 pubmed: 24699222 pmcid: 3974678
Polok, B. et al. Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am. J. Hum. Genet. 84, 259–265 (2009).
doi: 10.1016/j.ajhg.2009.01.006 pubmed: 19200527 pmcid: 2668018
Parry, D. A. et al. Mutations in CNNM4 cause jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am. J. Hum. Genet. 84, 266–273 (2009).
doi: 10.1016/j.ajhg.2009.01.009 pubmed: 19200525 pmcid: 2668026
Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).
doi: 10.1038/ng.384 pubmed: 19430479 pmcid: 2998712
The international consortium for blood pressure genome-wide association studies. genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
doi: 10.1038/nature10405 pmcid: 3340926
Schizophrenia psychiatric genome-wide association study (GWAS) consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).
doi: 10.1038/ng.940
Thyme, S. B. et al. Phenotypic landscape of Schizophrenia-associated genes defines candidates and their shared functions. Cell 177, 478–491 (2019).
doi: 10.1016/j.cell.2019.01.048 pubmed: 30929901 pmcid: 6494450
Zhu, X. et al. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nat. Neurosci. 24, 186–196 (2021).
doi: 10.1038/s41593-020-00767-4 pubmed: 33432196 pmcid: 8806165
Ishii, T., Funato, Y. & Miki, H. Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL). J. Biol. Chem. 288, 7263–7270 (2013).
doi: 10.1074/jbc.M112.418004 pubmed: 23362275 pmcid: 3591634
Hagihara, K. et al. Gosha-Jinki-Gan (GJG) shows anti-aging effects through suppression of TNF-α production by Chikusetsusaponin V. Gene. 815, 146178 (2022).
doi: 10.1016/j.gene.2021.146178 pubmed: 34995733

Auteurs

Yosuke Funato (Y)

Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. funato.yosuke.3i@kyoto-u.ac.jp.

Mai Mimura (M)

Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan.

Kazuto Nunomura (K)

Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan.

Bangzhong Lin (B)

Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan.

Shintarou Fujii (S)

Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan.

Junichi Haruta (J)

Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan.

Hiroaki Miki (H)

Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. miki.hiroaki.4e@kyoto-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH