Intranasal administration of recombinant human BDNF as a potential therapy for some primary headaches.


Journal

The journal of headache and pain
ISSN: 1129-2377
Titre abrégé: J Headache Pain
Pays: England
ID NLM: 100940562

Informations de publication

Date de publication:
25 Oct 2024
Historique:
received: 06 09 2024
accepted: 15 10 2024
medline: 26 10 2024
pubmed: 26 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

In addition to its critical role in neurogenesis, brain-derived neurotrophic factor (BDNF) modulates pain and depressive behaviors. In a translational perspective, we tested the anti-migraine activity of highly purified and characterized recombinant human BDNF (rhBDNF) in an animal model of cephalic pain based on the chronic and intermittent NTG administration (five total injections over nine days), used to mimic recurrence of attacks over a given period. To achieve this, we assessed the effects of two doses of rhBDNF (40 and 80 µg/kg) administered intranasally to adult male Sprague-Dawley rats, on trigeminal hyperalgesia (by orofacial formalin test), gene expression (by rt-PCR) of neuropeptides and inflammatory cytokines in specific areas of the brain related to migraine pain. Serum levels of CGRP, PACAP, and VIP (by ELISA) were also evaluated. The effects of rhBDNF were compared with those of sumatriptan (5 mg/kg i.p), administered 1 h before the last NTG administration. Both doses of rhBDNF significantly reduced NTG-induced nocifensive behavior in Phase II of the orofacial formalin test. The anti-hyperalgesic effect of intranasal high-dose rhBDNF administration in the NTG-treated animals was associated with a significant modulation of mRNA levels of neuropeptides (CGRP, PACAP, VIP) and cytokines (IL-1beta, IL-10) in the trigeminal ganglion, medulla-pons, and hypothalamic area. Of note, the effects of rhBNDF treatment were comparable to those induced by the administration of sumatriptan. rhBDNF administration at both doses significantly reduced serum levels of PACAP, while the higher dose also significantly reduced serum levels of VIP. The findings suggest that intranasal rhBDNF has the potential to be a safe, non-invasive and effective therapeutic approach for the treatment of primary headache, particularly migraine.

Sections du résumé

BACKGROUND BACKGROUND
In addition to its critical role in neurogenesis, brain-derived neurotrophic factor (BDNF) modulates pain and depressive behaviors.
METHODS METHODS
In a translational perspective, we tested the anti-migraine activity of highly purified and characterized recombinant human BDNF (rhBDNF) in an animal model of cephalic pain based on the chronic and intermittent NTG administration (five total injections over nine days), used to mimic recurrence of attacks over a given period. To achieve this, we assessed the effects of two doses of rhBDNF (40 and 80 µg/kg) administered intranasally to adult male Sprague-Dawley rats, on trigeminal hyperalgesia (by orofacial formalin test), gene expression (by rt-PCR) of neuropeptides and inflammatory cytokines in specific areas of the brain related to migraine pain. Serum levels of CGRP, PACAP, and VIP (by ELISA) were also evaluated. The effects of rhBDNF were compared with those of sumatriptan (5 mg/kg i.p), administered 1 h before the last NTG administration.
RESULTS RESULTS
Both doses of rhBDNF significantly reduced NTG-induced nocifensive behavior in Phase II of the orofacial formalin test. The anti-hyperalgesic effect of intranasal high-dose rhBDNF administration in the NTG-treated animals was associated with a significant modulation of mRNA levels of neuropeptides (CGRP, PACAP, VIP) and cytokines (IL-1beta, IL-10) in the trigeminal ganglion, medulla-pons, and hypothalamic area. Of note, the effects of rhBNDF treatment were comparable to those induced by the administration of sumatriptan. rhBDNF administration at both doses significantly reduced serum levels of PACAP, while the higher dose also significantly reduced serum levels of VIP.
CONCLUSIONS CONCLUSIONS
The findings suggest that intranasal rhBDNF has the potential to be a safe, non-invasive and effective therapeutic approach for the treatment of primary headache, particularly migraine.

Identifiants

pubmed: 39455939
doi: 10.1186/s10194-024-01890-4
pii: 10.1186/s10194-024-01890-4
doi:

Substances chimiques

Brain-Derived Neurotrophic Factor 0
Recombinant Proteins 0
BDNF protein, human 7171WSG8A2
Sumatriptan 8R78F6L9VO
Pituitary Adenylate Cyclase-Activating Polypeptide 0
Cytokines 0
Nitroglycerin G59M7S0WS3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

184

Informations de copyright

© 2024. The Author(s).

Références

Burch RC, Buse DC, Lipton RB (2019) Migraine Neurol Clin 37:631–649. https://doi.org/10.1016/j.ncl.2019.06.001
doi: 10.1016/j.ncl.2019.06.001 pubmed: 31563224
GBD 2021 Nervous System Disorders Collaborators (2024) Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the global burden of Disease Study 2021. Lancet Neurol 23:344–381. https://doi.org/10.1016/S1474-4422(24)00038-3
doi: 10.1016/S1474-4422(24)00038-3
Durham PL, Vause CV (2010) Calcitonin gene-related peptide (CGRP) receptor antagonists in the treatment of migraine. CNS Drugs 24:539–548. https://doi.org/10.2165/11534920-000000000-00000
doi: 10.2165/11534920-000000000-00000 pubmed: 20433208 pmcid: 3138175
Mínguez-Olaondo A, Quintas S, Morollón Sánchez-Mateos N et al (2021) Cutaneous Allodynia in Migraine: a narrative review. Front Neurol 12:831035. https://doi.org/10.3389/fneur.2021.831035
doi: 10.3389/fneur.2021.831035 pubmed: 35153995
Deodato M, Granato A, Martini M et al (2024) Instrumental assessment of pressure pain threshold over trigeminal and extra-trigeminal area in people with episodic and chronic migraine: a cross-sectional observational study. Neurol Sci 45:3923–3929. https://doi.org/10.1007/s10072-024-07372-4
doi: 10.1007/s10072-024-07372-4 pubmed: 38396170 pmcid: 11254968
Aguggia M, Saracco MG (2010) Pathophysiology of migraine chronification. Neurol Sci 31(Suppl 1). https://doi.org/10.1007/s10072-010-0264-y . :S15-7
Edvinsson L (2001) Pathophysiology of primary headaches. Curr Pain Headache Rep 5:71–78. https://doi.org/10.1007/s11916-001-0013-2
doi: 10.1007/s11916-001-0013-2 pubmed: 11252141
Wang Z, Yang X, Zhao B, Li W (2023) Primary headache disorders: from pathophysiology to neurostimulation therapies. Heliyon 9:e14786. https://doi.org/10.1016/j.heliyon.2023.e14786
doi: 10.1016/j.heliyon.2023.e14786 pubmed: 37077680 pmcid: 10106918
Dodick DW (2018) A phase-by-phase review of Migraine Pathophysiology. Headache 58 Suppl 14–16. https://doi.org/10.1111/head.13300
May A, Schwedt TJ, Magis D et al (2018) Cluster headache. Nat Rev Dis Primers 4:18006. https://doi.org/10.1038/nrdp.2018.6
doi: 10.1038/nrdp.2018.6 pubmed: 29493566
Andreou AP, Edvinsson L (2019) Mechanisms of migraine as a chronic evolutive condition. J Headache Pain 20:117. https://doi.org/10.1186/s10194-019-1066-0
doi: 10.1186/s10194-019-1066-0 pubmed: 31870279 pmcid: 6929435
Williamson DJ, Hargreaves RJ (2001) Neurogenic inflammation in the context of migraine. Microsc Res Tech 53:167–178. https://doi.org/10.1002/jemt.1081
doi: 10.1002/jemt.1081 pubmed: 11301492
Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43:S16–20
pubmed: 8389008
Edvinsson L, Tajti J, Szalárdy L, Vécsei L (2018) PACAP and its role in primary headaches. J Headache Pain 19:21. https://doi.org/10.1186/s10194-018-0852-4
doi: 10.1186/s10194-018-0852-4 pubmed: 29523978 pmcid: 5845082
Seybold VS (2009) The Role of Peptides in Central Sensitization. pp 451–491
Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384:560–564. https://doi.org/10.1038/384560a0
doi: 10.1038/384560a0 pubmed: 8955268
Iyengar S, Johnson KW, Ossipov MH, Aurora SK (2019) CGRP and the Trigeminal System in Migraine. Headache: J Head Face Pain 59:659–681. https://doi.org/10.1111/head.13529
doi: 10.1111/head.13529
Caronna E, Alpuente A, Torres-Ferrus M, Pozo-Rosich P (2024) CGRP monoclonal antibodies and CGRP receptor antagonists (Gepants) in migraine prevention. pp 107–124
Tanaka M, Szabó Á, Körtési T et al (2023) From CGRP to PACAP, VIP, and Beyond: unraveling the Next chapters in Migraine Treatment. Cells 12:2649. https://doi.org/10.3390/cells12222649
doi: 10.3390/cells12222649 pubmed: 37998384 pmcid: 10670698
Pellesi L, Al-Karagholi MA-M, De Icco R et al (2021) Effect of Vasoactive Intestinal Polypeptide on Development of Migraine headaches. JAMA Netw Open 4:e2118543. https://doi.org/10.1001/jamanetworkopen.2021.18543
doi: 10.1001/jamanetworkopen.2021.18543 pubmed: 34357396 pmcid: 8346940
Kuburas A, Russo AF (2023) Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 24:34. https://doi.org/10.1186/s10194-023-01569-2
doi: 10.1186/s10194-023-01569-2 pubmed: 37009867 pmcid: 10069045
Emery AC, Eiden LE (2012) Signaling through the neuropeptide GPCR PAC 1 induces neuritogenesis via a single linear cAMP- and ERK‐dependent pathway using a novel cAMP sensor. FASEB J 26:3199–3211. https://doi.org/10.1096/fj.11-203042
doi: 10.1096/fj.11-203042 pubmed: 22532442 pmcid: 3405272
Mason BN, Wattiez A-S, Balcziak LK et al (2020) Vascular actions of peripheral CGRP in migraine-like photophobia in mice. Cephalalgia 40:1585–1604. https://doi.org/10.1177/0333102420949173
doi: 10.1177/0333102420949173 pubmed: 32811179 pmcid: 7785273
De Logu F, Landini L, Janal MN et al (2019) Migraine-provoking substances evoke periorbital allodynia in mice. J Headache Pain 20:18. https://doi.org/10.1186/s10194-019-0968-1
doi: 10.1186/s10194-019-0968-1 pubmed: 30764776 pmcid: 6734434
Pellesi L, Al-Karagholi MA-M, De Icco R et al (2022) Plasma levels of CGRP during a 2-h infusion of VIP in healthy volunteers and patients with migraine: an exploratory study. Front Neurol 13. https://doi.org/10.3389/fneur.2022.871176
Pellesi L, Al-Karagholi MA-M, Chaudhry BA et al (2020) Two-hour infusion of vasoactive intestinal polypeptide induces delayed headache and extracranial vasodilation in healthy volunteers. Cephalalgia 40:1212–1223. https://doi.org/10.1177/0333102420937655
doi: 10.1177/0333102420937655 pubmed: 32594760
Kakurai M, Murata S, Nakagawa H et al (2001) Vasoactive intestinal peptide regulates its receptor expression and functions of human keratinocytes via type I vasoactive intestinal peptide receptors. J Invest Dermatology 116:743–749. https://doi.org/10.1046/j.1523-1747.2001.01306.x
doi: 10.1046/j.1523-1747.2001.01306.x
Malick A, Burstein R (2000) Peripheral and central sensitization during migraine. Funct Neurol 15 Suppl 3:28–35
Sances G, Tassorelli C, Pucci E et al (2004) Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. https://doi.org/10.1111/j.1468-2982.2004.00639.x . Cephalalgia
Demartini C, Greco R, Zanaboni AM et al (2019) Nitroglycerin as a comparative experimental model of migraine pain: from animal to human and back. Prog Neurobiol 177:15–32. https://doi.org/10.1016/j.pneurobio.2019.02.002
doi: 10.1016/j.pneurobio.2019.02.002 pubmed: 30771365
Fanciullacci M (1997) Responsiveness of the trigeminovascular system to nitroglycerine in cluster headache patients. Brain 120:283–288. https://doi.org/10.1093/brain/120.2.283
doi: 10.1093/brain/120.2.283 pubmed: 9117375
Akerman S, Karsan N, Bose P et al (2019) Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity. Brain 142:103–119. https://doi.org/10.1093/brain/awy313
doi: 10.1093/brain/awy313 pubmed: 30596910
Juhasz G, Zsombok T, Jakab B et al (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25:179–183. https://doi.org/10.1111/j.1468-2982.2005.00836.x
doi: 10.1111/j.1468-2982.2005.00836.x pubmed: 15689192
Sakharnova TA, Vedunova MV, Mukhina IV (2012) Brain-derived neurotrophic factor (BDNF) and its role in the functioning of the central nervous system. Neurochemical J 6:251–259. https://doi.org/10.1134/S1819712412030129
doi: 10.1134/S1819712412030129
Björkholm C, Monteggia LM (2016) BDNF – a key transducer of antidepressant effects. Neuropharmacology 102:72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034
doi: 10.1016/j.neuropharm.2015.10.034 pubmed: 26519901
Latremoliere A, Woolf CJ (2009) Central Sensitization: a generator of Pain Hypersensitivity by Central neural plasticity. Journal of Pain
Lemos C, Mendonça D, Pereira-Monteiro J et al (2010) BDNF and CGRP interaction: implications in migraine susceptibility. Cephalalgia 30:1375–1382. https://doi.org/10.1177/0333102410368443
doi: 10.1177/0333102410368443 pubmed: 20959432
Salio C, Ferrini F (2016) BDNF and GDNF expression in discrete populations of nociceptors. Annals Anat - Anatomischer Anzeiger 207:55–61. https://doi.org/10.1016/j.aanat.2015.12.001
doi: 10.1016/j.aanat.2015.12.001
Fischer M, Wille G, Klien S et al (2012) Brain-derived neurotrophic factor in primary headaches. J Headache Pain 13:469–475. https://doi.org/10.1007/s10194-012-0454-5
doi: 10.1007/s10194-012-0454-5 pubmed: 22584531 pmcid: 3464472
Blandini F, Rinaldi L, Tassorelli C et al (2006) Peripheral levels of BDNF and NGF in primary headaches. Cephalalgia 26:136–142. https://doi.org/10.1111/j.1468-2982.2005.01006.x
doi: 10.1111/j.1468-2982.2005.01006.x pubmed: 16426267
Eaton MJ, Blits B, Ruitenberg MJ et al (2002) Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord. Gene Ther 9:1387–1395. https://doi.org/10.1038/sj.gt.3301814
doi: 10.1038/sj.gt.3301814 pubmed: 12365004
Miki K, Fukuoka T, Tokunaga A et al (2000) Differential effect of brain-derived neurotrophic factor on high-threshold mechanosensitivity in a rat neuropathic pain model. Neurosci Lett 278:85–88. https://doi.org/10.1016/S0304-3940(99)00908-8
doi: 10.1016/S0304-3940(99)00908-8 pubmed: 10643807
Tarsa L, Bałkowiec-Iskra E, Kratochvil FJ et al (2010) Tooth pulp inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons. Neuroscience 167:1205–1215. https://doi.org/10.1016/j.neuroscience.2010.03.002
doi: 10.1016/j.neuroscience.2010.03.002 pubmed: 20223282
Koute V, Michalopoulou A, Siokas V et al (2021) Val66Met polymorphism is associated with decreased likelihood for pediatric headache and migraine. Neurol Res 43:715–723. https://doi.org/10.1080/01616412.2021.1922181
doi: 10.1080/01616412.2021.1922181 pubmed: 34000980
Terrazzino S, Cargnin S, Viana M et al (2017) Brain-derived neurotrophic factor Val66Met gene polymorphism impacts on Migraine susceptibility: a Meta-analysis of case–control studies. https://doi.org/10.3389/fneur.2017.00159 . Front Neurol 8:
Tassorelli C, Joseph SA, Buzzi MG, Nappi G (1999) The effects on the central nervous system of nitroglycerin - putative mechanisms and mediators. Prog Neurobiol
Greco R, Demartini C, Zanaboni AM et al (2020) FAAH inhibition as a preventive treatment for migraine: a pre-clinical study. Neurobiol Dis 134:104624. https://doi.org/10.1016/j.nbd.2019.104624
doi: 10.1016/j.nbd.2019.104624 pubmed: 31629892
Greco R, Demartini C, Zanaboni A et al (2021) Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine. Neurobiol Dis 147. https://doi.org/10.1016/j.nbd.2020.105157
Greco R, Demartini C, Francavilla M et al (2022) Antagonism of CGRP receptor: Central and Peripheral mechanisms and mediators in an animal model of chronic migraine. https://doi.org/10.3390/cells11193092 . Cells 11:
Sufka KJ, Staszko SM, Johnson AP et al (2016) Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J Headache Pain. https://doi.org/10.1186/s10194-016-0624-y
doi: 10.1186/s10194-016-0624-y pubmed: 27093871 pmcid: 4837195
Farajdokht F, Babri S, Karimi P et al (2017) Chronic ghrelin treatment reduced photophobia and anxiety-like behaviors in nitroglycerin‐ induced migraine: role of pituitary adenylate cyclase‐activating polypeptide. Eur J Neurosci 45:763–772. https://doi.org/10.1111/ejn.13486
doi: 10.1111/ejn.13486 pubmed: 27886414
Bates EA, Nikai T, Brennan KC et al (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. https://doi.org/10.1111/j.1468-2982.2009.01864.x . Cephalalgia
Bingham S, Davey PT, Sammons M et al (2001) Inhibition of inflammation-induced thermal hypersensitivity by sumatriptan through activation of 5-HT1B/1D receptors. Exp Neurol 167:65–73. https://doi.org/10.1006/exnr.2000.7521
doi: 10.1006/exnr.2000.7521 pubmed: 11161594
Casili G, Lanza M, Filippone A et al (2020) Dimethyl fumarate alleviates the nitroglycerin (NTG)-induced migraine in mice. J Neuroinflammation. https://doi.org/10.1186/s12974-020-01736-1
doi: 10.1186/s12974-020-01736-1 pubmed: 32066464 pmcid: 7469611
Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption. Br J Pharmacol. https://doi.org/10.1111/j.1476-5381.1993.tb13643.x
doi: 10.1111/j.1476-5381.1993.tb13643.x pubmed: 8395298 pmcid: 2175651
Pradhan AA, Smith ML, McGuire B et al (2014) Characterization of a novel model of chronic migraine. Pain 155:269–274. https://doi.org/10.1016/j.pain.2013.10.004
doi: 10.1016/j.pain.2013.10.004 pubmed: 24121068
Tipton AF, Tarash I, McGuire B et al (2016) The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia 36:1048–1056. https://doi.org/10.1177/0333102415623070
doi: 10.1177/0333102415623070 pubmed: 26682574 pmcid: 5557701
Moye LS, Novack ML, Tipton AF et al (2019) The development of a mouse model of mTBI-induced post-traumatic migraine, and identification of the delta opioid receptor as a novel therapeutic target. Cephalalgia 39:77–90. https://doi.org/10.1177/0333102418777507
doi: 10.1177/0333102418777507 pubmed: 29771142
Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154:S44–S53. https://doi.org/10.1016/j.pain.2013.07.021
doi: 10.1016/j.pain.2013.07.021 pubmed: 23891892
Raboisson P, Dallel R (2004) The orofacial formalin test. Neurosci Biobehav Rev 28:219–226. https://doi.org/10.1016/j.neubiorev.2003.12.003
doi: 10.1016/j.neubiorev.2003.12.003 pubmed: 15172765
Ghelardini C, Galeotti N, Figini M et al (1996) The central cholinergic system has a role in the antinociception induced in rodents and guinea pigs by the antimigraine drug sumatriptan. Journal of Pharmacology and Experimental Therapeutics
Huang D, Ren L, Qiu CS et al (2016) Characterization of a mouse model of headache. https://doi.org/10.1097/j.pain.0000000000000578 . Pain
Knyihár-Csillik E, Tajti J, Samsara M et al (1997) Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res. https://doi.org/10.1002/(SICI)1097-4547(19970601)48:5%3C;449::AID-JNR6%3E;3.3.CO;2-X
Tomić MA, Pecikoza UB, Micov AM et al (2015) The effects of levetiracetam, sumatriptan, and caffeine in a rat model of trigeminal pain: interactions in 2-component combinations. Anesth Analg. https://doi.org/10.1213/ANE.0000000000000640
doi: 10.1213/ANE.0000000000000640 pubmed: 26465930
Mohammadi Vosough E, Baradaran Rahimi V, Masoud SA et al (2019) Evaluation of protective effects of non-selective cannabinoid receptor agonist WIN 55,212-2 against the nitroglycerine-induced acute and chronic animal models of migraine: a mechanistic study. Life Sci. https://doi.org/10.1016/j.lfs.2019.116670
doi: 10.1016/j.lfs.2019.116670 pubmed: 31330139
Greco R, Demartini C, Zanaboni AM, Tassorelli C (2018) Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 19:51. https://doi.org/10.1186/s10194-018-0879-6
doi: 10.1186/s10194-018-0879-6 pubmed: 30003352 pmcid: 6043463
Tateiwa H, Kawano T, Nishigaki A et al (2018) The role of hippocampal brain-derived neurotrophic factor in age-related differences in neuropathic pain behavior in rats. Life Sci 197:56–66. https://doi.org/10.1016/j.lfs.2018.01.030
doi: 10.1016/j.lfs.2018.01.030 pubmed: 29409869
Krishnan JKS, Arun P, Chembukave B et al (2017) Effect of administration method, animal weight and age on the intranasal delivery of drugs to the brain. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2017.05.012
doi: 10.1016/j.jneumeth.2017.05.012 pubmed: 28499841 pmcid: 5517078
Manni L, Conti G, Chiaretti A, Soligo M (2021) Intranasal delivery of nerve growth factor in neurodegenerative diseases and Neurotrauma. Front Pharmacol
Alcalá-Barraza SR, Lee MS, Hanson LR et al (2010) Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target 18:179–190. https://doi.org/10.3109/10611860903318134
doi: 10.3109/10611860903318134 pubmed: 19807216 pmcid: 3732751
Greco R, Demartini C, Zanaboni AM et al (2017) Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: targets and anti-migraine mechanisms. Cephalalgia 37:1272–1284. https://doi.org/10.1177/0333102416678000
doi: 10.1177/0333102416678000 pubmed: 27919017
Martins LB, Teixeira AL, Domingues RB (2017) Neurotrophins and migraine. Vitam Horm 104:459–473. https://doi.org/10.1016/bs.vh.2016.10.003
doi: 10.1016/bs.vh.2016.10.003 pubmed: 28215304
Buldyrev I, Tanner NM, Hsieh HY et al (2006) Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons. J Neurochem. https://doi.org/10.1111/j.1471-4159.2006.04161.x
doi: 10.1111/j.1471-4159.2006.04161.x pubmed: 17064360 pmcid: 2440676
Zhang L, Zhou Y, Yang L et al (2023) PACAP6-38 improves nitroglycerin-induced central sensitization by modulating synaptic plasticity at the trigeminal nucleus caudalis in a male rat model of chronic migraine. J Headache Pain 24:66. https://doi.org/10.1186/s10194-023-01603-3
doi: 10.1186/s10194-023-01603-3 pubmed: 37271806 pmcid: 10240775
Scher AI, McGinley JS, VanDam LR et al (2023) Plasma calcitonin gene-related peptide and nerve growth factor as headache and pain biomarkers in recently deployed soldiers with and without a recent concussion. Headache 63:1240–1250. https://doi.org/10.1111/head.14635
doi: 10.1111/head.14635 pubmed: 37796114
Fila M, Pawlowska E, Szczepanska J, Blasiak J (2023) Autophagy may protect the brain against prolonged consequences of headache attacks: a narrative/hypothesis review. Headache 63:1154–1166. https://doi.org/10.1111/head.14625
doi: 10.1111/head.14625 pubmed: 37638395
Akerman S, Goadsby PJ, Romero-Reyes M (2024) PACAP-38 related modulation of the cranial parasympathetic projection: a novel mechanism and therapeutic target in severe primary headache. Br J Pharmacol 181:480–494. https://doi.org/10.1111/bph.16242
doi: 10.1111/bph.16242 pubmed: 37706270
Edvinsson L (2013) Role of VIP/PACAP in primary headachestle. Cephalalgia 33:1070–1072. https://doi.org/10.1177/0333102413483929
doi: 10.1177/0333102413483929 pubmed: 23575820
Dux M, Vogler B, Kuhn A et al (2022) The Anti-CGRP antibody Fremanezumab lowers CGRP release from Rat Dura Mater and Meningeal Blood Flow. Cells 11:1768. https://doi.org/10.3390/cells11111768
doi: 10.3390/cells11111768 pubmed: 35681463 pmcid: 9179471
Pavelic AR, Wöber C, Riederer F, Zebenholzer K (2022) Monoclonal antibodies against calcitonin gene-related peptide for Migraine Prophylaxis: a systematic review of real-World Data. Cells 12:143. https://doi.org/10.3390/cells12010143
doi: 10.3390/cells12010143 pubmed: 36611935 pmcid: 9819019
Körtési T, Spekker E, Vécsei L (2022) Exploring the Tryptophan Metabolic pathways in Migraine-related mechanisms. Cells 11:3795. https://doi.org/10.3390/cells11233795
doi: 10.3390/cells11233795 pubmed: 36497053 pmcid: 9736455
Nicolodi M, Bianco E Del (1990) Sensory neuropeptides (substance P, calcitonin gene-related peptide) and vasoactive intestinal polypeptide in human saliva: their pattern in Migraine and Cluster Headache. Cephalalgia 10:39–50. https://doi.org/10.1046/j.1468-2982.1990.1001039.x
doi: 10.1046/j.1468-2982.1990.1001039.x pubmed: 1690601
Park S, Jung H, Han S-W et al (2024) Differences in Neuropathology between Nitroglycerin-Induced mouse models of episodic and chronic migraine. Int J Mol Sci 25:3706. https://doi.org/10.3390/ijms25073706
doi: 10.3390/ijms25073706 pubmed: 38612517 pmcid: 11011425
Bon I E (2022) Trigeminal Sensor System of the rat, Development and Morphofunctional features. Biomed J Sci Tech Res 44. https://doi.org/10.26717/BJSTR.2022.44.007091
Sims KB, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186:165–183. https://doi.org/10.1016/0006-8993(80)90263-2
doi: 10.1016/0006-8993(80)90263-2 pubmed: 6986955
Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. https://doi.org/10.1016/0006-8993(95)00348-T
doi: 10.1016/0006-8993(95)00348-T pubmed: 8574645
Uddman R, Edvinsson L (1989) Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1:230–252
pubmed: 2701377
Jansen-Olesen I, Baun M, Amrutkar DV et al (2014) PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides 48:53–64. https://doi.org/10.1016/j.npep.2014.01.004
doi: 10.1016/j.npep.2014.01.004 pubmed: 24508136
Frederiksen SD, Warfvinge K, Ohlsson L, Edvinsson L (2018) Expression of Pituitary Adenylate cyclase-activating peptide, calcitonin gene-related peptide and headache targets in the trigeminal ganglia of rats and humans. Neuroscience 393:319–332. https://doi.org/10.1016/j.neuroscience.2018.10.004
doi: 10.1016/j.neuroscience.2018.10.004 pubmed: 30336190
Chan KY, Baun M, de Vries R et al (2011) Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery. Cephalalgia 31:181–189. https://doi.org/10.1177/0333102410375624
doi: 10.1177/0333102410375624 pubmed: 20974589
Fromy B, Abraham P, Saumet J-L (1998) Non-nociceptive capsaicin-sensitive nerve terminal stimulation allows for an original vasodilatory reflex in the human skin. Brain Res 811:166–168. https://doi.org/10.1016/S0006-8993(98)00973-1
doi: 10.1016/S0006-8993(98)00973-1 pubmed: 9804943
Hanci F, Kilinc YB, Kilinc E et al (2021) Plasma levels of vasoactive neuropeptides in pediatric patients with migraine during attack and attack-free periods. Cephalalgia 41:166–175. https://doi.org/10.1177/0333102420957588
doi: 10.1177/0333102420957588 pubmed: 32903061
Kilinc YB, Kilinc E, Danis A et al (2023) Mitochondrial metabolism related markers GDF-15, FGF‐21, and HIF‐1α are elevated in pediatric migraine attacks. Headache: J Head Face Pain 63:1076–1086. https://doi.org/10.1111/head.14618
doi: 10.1111/head.14618
Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience. https://doi.org/10.1016/S0306-4522(98)00366-2
doi: 10.1016/S0306-4522(98)00366-2 pubmed: 10465460
Kresse A, Jacobowitz DM, Skofitsch G (1995) Detailed mapping of CGRP mRNA expression in the rat central nervous system: comparison with previous immunocytochemical findings. Brain Res Bull. https://doi.org/10.1016/0361-9230(94)00201-B
doi: 10.1016/0361-9230(94)00201-B pubmed: 7697380
Reuter U, Bolay H, Jansen-Olesen I et al (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain. https://doi.org/10.1093/brain/124.12.2490
doi: 10.1093/brain/124.12.2490 pubmed: 11701602
Strecker T, Messlinger K (2003) Neuropeptide release in the dura mater encephali in response to nitric oxide - relevance for the development of vascular headaches? Schmerz. https://doi.org/10.1007/s00482-003-0210-5
Durham PL, Masterson CG (2013) Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. https://doi.org/10.1111/j.1526-4610.2012.02262.x . Headache
Charlton T, Prowse N, McFee A et al (2023) Brain-derived neurotrophic factor (BDNF) has direct anti-inflammatory effects on microglia. Front Cell Neurosci 17. https://doi.org/10.3389/fncel.2023.1188672
Musubire AK, Cheema S, Ray JC et al (2023) Cytokines in primary headache disorders: a systematic review and meta-analysis. J Headache Pain 24:36. https://doi.org/10.1186/s10194-023-01572-7
doi: 10.1186/s10194-023-01572-7 pubmed: 37016284 pmcid: 10071234
Yamanaka G, Hayashi K, Morishita N et al (2023) Experimental and clinical investigation of cytokines in Migraine: a narrative review. Int J Mol Sci 24:8343. https://doi.org/10.3390/ijms24098343
doi: 10.3390/ijms24098343 pubmed: 37176049 pmcid: 10178908
Karaaslan Z, Özçelik P, Ulukan Ç et al (2020) Plasma levels of inflammatory mediators in vestibular migraine. Int J Neurosci 130:330–335. https://doi.org/10.1080/00207454.2019.1681994
doi: 10.1080/00207454.2019.1681994 pubmed: 31623501
Ulmann L, Hatcher JP, Hughes JP et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2308-08.2008
doi: 10.1523/JNEUROSCI.2308-08.2008 pubmed: 18971468 pmcid: 6671487
Yin R, Zhao S, Qiu C (2020) Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling. J Pharm Pharmacol 72:539–550. https://doi.org/10.1111/jphp.13233
doi: 10.1111/jphp.13233 pubmed: 32034779
Tanure MTA, Gomez RS, Hurtado RCL et al (2010) Increased serum levels of brain-derived neurotropic factor during migraine attacks: a pilot study. J Headache Pain. https://doi.org/10.1007/s10194-010-0233-0
doi: 10.1007/s10194-010-0233-0 pubmed: 20556464 pmcid: 3452273
Guo J, Deng H, Bo X, Yang X (2016) Involvement of BDNF/TrkB and ERK/CREB axes in nitroglycerin-induced rat migraine and effects of estrogen on these signals in the migraine. Biol Open. https://doi.org/10.1242/bio.021022
doi: 10.1242/bio.021022 pubmed: 27737823 pmcid: 5278423
Fanciullacci M, Alessandri M, Figini M et al (1995) Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 60:119–123. https://doi.org/10.1016/0304-3959(94)00097-X
doi: 10.1016/0304-3959(94)00097-X pubmed: 7540279
May A, Evers S, Goadsby PJ et al (2023) European Academy of Neurology guidelines on the treatment of cluster headache. Eur J Neurol 30:2955–2979. https://doi.org/10.1111/ene.15956
doi: 10.1111/ene.15956 pubmed: 37515405
Sureda-Gibert P, Romero-Reyes M, Akerman S (2022) Nitroglycerin as a model of migraine: clinical and preclinical review. Neurobiol Pain 12:100105. https://doi.org/10.1016/j.ynpai.2022.100105
doi: 10.1016/j.ynpai.2022.100105 pubmed: 36974065 pmcid: 10039393
Pellesi L (2023) The human NTG model of migraine in drug discovery and development. Expert Opin Drug Discov 18:1077–1085. https://doi.org/10.1080/17460441.2023.2236545
doi: 10.1080/17460441.2023.2236545 pubmed: 37439036
Hurley RW, Adams MCB (2008) Sex, gender, and Pain: an overview of a Complex Field. Anesth Analg 107:309–317. https://doi.org/10.1213/01.ane.0b013e31816ba437
doi: 10.1213/01.ane.0b013e31816ba437 pubmed: 18635502 pmcid: 2715547

Auteurs

Rosaria Greco (R)

Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.

Miriam Francavilla (M)

Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

Sara Facchetti (S)

Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

Chiara Demartini (C)

Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.

Anna Maria Zanaboni (AM)

Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

Maria Irene Antonangeli (MI)

Dompé Farmaceutici, L'Aquila, Italy.

Mariano Maffei (M)

Dompé Farmaceutici, L'Aquila, Italy.

Franca Cattani (F)

Dompé Farmaceutici, L'Aquila, Italy.

Andrea Aramini (A)

Dompé Farmaceutici, L'Aquila, Italy.

Marcello Allegretti (M)

Dompé Farmaceutici, L'Aquila, Italy.

Cristina Tassorelli (C)

Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

Lidia De Filippis (L)

Dompé Farmaceutici SpA, Via Santa Lucia 6, 20122, Milano, Italy. lidia.defilippis@dompe.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH