Chemokine CCL2 and its receptor CCR2 in different age groups of patients with COVID-19.


Journal

BMC immunology
ISSN: 1471-2172
Titre abrégé: BMC Immunol
Pays: England
ID NLM: 100966980

Informations de publication

Date de publication:
26 Oct 2024
Historique:
received: 06 08 2024
accepted: 14 10 2024
medline: 26 10 2024
pubmed: 26 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

Despite the development of various antiviral drugs, most of them are not effective in the treatment of coronavirus disease 2019 (COVID-19) as a hyperinflammatory disorder. Chemokine (C-C motif) ligand 2 (CCL2) is one of the critical CC chemokines involved in the pathogenesis and severity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This study aimed to investigate the expression of CCL2 and CC chemokine receptor 2 (CCR2) in COVID-19 patients. Peripheral blood samples were collected from 60 confirmed COVID-19 patients and 60 age-matched healthy subjects. The ages of the subjects were categorized as follows: up to 20 years, 20 to 40 years, 40 to 60 years, and more than 60 years. CCL2 serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). CCR2 gene expression in peripheral blood mononuclear cells (PBMCs) was measured employing real-time polymerase chain reaction (PCR). In all age groups, CCL2 serum levels were significantly elevated in patients compared to healthy controls (P < 0.0001). CCL2 levels were higher in severe patients than in moderate patients. Moreover, CCR2 expression by PBMCs was higher in patients compared to control subjects. However, a significant difference between patients and controls over 60 years of age was identified (P = 0.0353). There was no significant difference in CCR2 expression between moderate and severe COVID-19 patients. Taken together, the findings demonstrate that CCL2 and CCR2 are upregulated in COVID-19 patients at protein and mRNA levels, respectively. Therefore, the CCL2/CCR2 axis may be a potential therapeutic target in order to improve patient outcomes.

Sections du résumé

BACKGROUND BACKGROUND
Despite the development of various antiviral drugs, most of them are not effective in the treatment of coronavirus disease 2019 (COVID-19) as a hyperinflammatory disorder. Chemokine (C-C motif) ligand 2 (CCL2) is one of the critical CC chemokines involved in the pathogenesis and severity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This study aimed to investigate the expression of CCL2 and CC chemokine receptor 2 (CCR2) in COVID-19 patients.
METHODS METHODS
Peripheral blood samples were collected from 60 confirmed COVID-19 patients and 60 age-matched healthy subjects. The ages of the subjects were categorized as follows: up to 20 years, 20 to 40 years, 40 to 60 years, and more than 60 years. CCL2 serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). CCR2 gene expression in peripheral blood mononuclear cells (PBMCs) was measured employing real-time polymerase chain reaction (PCR).
RESULTS RESULTS
In all age groups, CCL2 serum levels were significantly elevated in patients compared to healthy controls (P < 0.0001). CCL2 levels were higher in severe patients than in moderate patients. Moreover, CCR2 expression by PBMCs was higher in patients compared to control subjects. However, a significant difference between patients and controls over 60 years of age was identified (P = 0.0353). There was no significant difference in CCR2 expression between moderate and severe COVID-19 patients.
CONCLUSIONS CONCLUSIONS
Taken together, the findings demonstrate that CCL2 and CCR2 are upregulated in COVID-19 patients at protein and mRNA levels, respectively. Therefore, the CCL2/CCR2 axis may be a potential therapeutic target in order to improve patient outcomes.

Identifiants

pubmed: 39455952
doi: 10.1186/s12865-024-00662-8
pii: 10.1186/s12865-024-00662-8
doi:

Substances chimiques

Receptors, CCR2 0
Chemokine CCL2 0
CCR2 protein, human 0
CCL2 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

72

Informations de copyright

© 2024. The Author(s).

Références

Sun J, He W-T, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med. 2020;26(5):483–95.
pubmed: 32359479 pmcid: 7118693 doi: 10.1016/j.molmed.2020.02.008
Tsang HF, Chan LWC, Cho WCS, Yu ACS, Yim AKY, Chan AKC, et al. An update on COVID-19 pandemic: the epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev Anti Infect Ther. 2021;19(7):877–88.
pubmed: 33306423 doi: 10.1080/14787210.2021.1863146
Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A systematic review of COVID-19 epidemiology based on current evidence. J Clin Med. 2020;9(4):967.
pubmed: 32244365 pmcid: 7231098 doi: 10.3390/jcm9040967
Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372.
pubmed: 32230900 pmcid: 7232198 doi: 10.3390/v12040372
Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; coronavirus disease-19). Clin Exp Pediatr. 2020;63(4):119–24.
pubmed: 32252141 pmcid: 7170784 doi: 10.3345/cep.2020.00493
Rokni M, Heidari Nia M, Sarhadi M, Mirinejad S, Sargazi S, Moudi M, et al. Association of TMPRSS2 gene polymorphisms with COVID-19 severity and mortality: a case-control study with computational analyses. Appl Biochem Biotechnol. 2022;194(8):3507–26.
pubmed: 35386063 pmcid: 8986508 doi: 10.1007/s12010-022-03885-w
Chen R, Lan Z, Ye J, Pang L, Liu Y, Wu W, et al. Cytokine storm: the primary determinant for the pathophysiological evolution of COVID-19 deterioration. Front Immunol. 2021;12:589095.
pubmed: 33995341 pmcid: 8115911 doi: 10.3389/fimmu.2021.589095
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66–70.
pubmed: 32418715 pmcid: 7204669 doi: 10.1016/j.cytogfr.2020.05.002
Khosroshahi LM, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol. 2021;93:107364.
doi: 10.1016/j.intimp.2020.107364
Heidari Nia M, Rokni M, Mirinejad S, Kargar M, Rahdar S, Sargazi S, et al. Association of polymorphisms in tumor necrosis factors with SARS-CoV‐2 infection and mortality rate: a case‐control study and in silico analyses. J Med Virol. 2022;94(4):1502–12.
pubmed: 34821383 doi: 10.1002/jmv.27477
Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV‐2 during an outbreak in Iran: comparison with SARS and MERS. Rev Med Virol. 2020;30(3):e2107.
pubmed: 32267987 pmcid: 7235481 doi: 10.1002/rmv.2107
Rokni M, Ahmadikia K, Asghari S, Mashaei S, Hassanali F. Comparison of clinical, para-clinical and laboratory findings in survived and deceased patients with COVID-19: diagnostic role of inflammatory indications in determining the severity of illness. BMC Infect Dis. 2020;20:869.
pubmed: 33225909 pmcid: 7680983 doi: 10.1186/s12879-020-05540-3
Rokni M, Hamblin MR, Rezaei N. Cytokines and COVID-19: friends or foes? Hum Vaccine Immunother. 2020;16(10):2363–5.
doi: 10.1080/21645515.2020.1799669
Sargazi S, Sheervalilou R, Rokni M, Shirvaliloo M, Shahraki O, Rezaei N. The role of autophagy in controlling SARS-CoV‐2 infection: an overview on virophagy‐mediated molecular drug targets. Cell Biol Int. 2021;45(8):1599–612.
pubmed: 33818861 pmcid: 8251464 doi: 10.1002/cbin.11609
Bagheri V. Pharmacological targeting of HMGB-1 translocation: a potential therapeutic strategy for COVID-19. Pharmacol Res. 2022;184:106455.
pubmed: 36116707 pmcid: 9477604 doi: 10.1016/j.phrs.2022.106455
Rokni M, Sarhadi M, Heidari Nia M, Mohamed Khosroshahi L, Asghari S, Sargazi S, et al. Single nucleotide polymorphisms located in TNFA, IL1RN, IL6R, and IL6 genes are associated with COVID-19 risk and severity in an Iranian population. Cell Biol Int. 2022;46(7):1109–27.
pubmed: 35521908 pmcid: 9347541 doi: 10.1002/cbin.11807
Hassanshahi G, Arababadi MK, Khoramdelazad H, Yaghini N, Zarandi ER. Assessment of CXCL12 (SDF-1α) polymorphisms and its serum level in posttransfusion occult HBV-infected patients in Southeastern Iran. Arch Med Res. 2010;41(5):338–42.
pubmed: 20851290 doi: 10.1016/j.arcmed.2010.07.001
Aminzadeh F, Ghorashi Z, Nabati S, Ghasemshirazi M, Arababadi MK, Shamsizadeh A, et al. Differential expression of CXC chemokines CXCL 10 and CXCL 12 in term and pre-term neonates and their mothers. Am J Reprod Immunol. 2012;68(4):338–44.
pubmed: 22738089 doi: 10.1111/j.1600-0897.2012.01167.x
Azin H, Vazirinejad R, Ahmadabadi BN, Khorramdelazad H, Zarandi ER, Arababadi MK, et al. The SDF-1 3′ a genetic variation of the chemokine SDF-1α (CXCL12) in parallel with its increased circulating levels is associated with susceptibility to MS: a study on Iranian multiple sclerosis patients. J Mol Neurosci. 2012;47:431–6.
pubmed: 22125123 doi: 10.1007/s12031-011-9672-6
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32.
pubmed: 32446778 pmcid: 7211650 doi: 10.1016/j.cytogfr.2020.05.003
Pum A, Ennemoser M, Adage T, Kungl AJ. Cytokines and chemokines in SARS-CoV-2 infections—therapeutic strategies targeting cytokine storm. Biomolecules. 2021;11(1):91.
pubmed: 33445810 pmcid: 7828218 doi: 10.3390/biom11010091
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible treatments: all options on the table. Int Immunopharmacol. 2022;113:109325.
pubmed: 36252475 pmcid: 9561120 doi: 10.1016/j.intimp.2022.109325
Moadab F, Khorramdelazad H, Abbasifard M. Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches. Life Sci. 2021;269:119034.
pubmed: 33453247 doi: 10.1016/j.lfs.2021.119034
Vakilian A, Khorramdelazad H, Heidari P, Rezaei ZS, Hassanshahi G. CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int. 2017;103:1–7.
pubmed: 28025034 doi: 10.1016/j.neuint.2016.12.013
Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine. 2018;110:226–31.
pubmed: 29277337 doi: 10.1016/j.cyto.2017.12.010
Abbasifard M, Khorramdelazad H. Harmonizing hope: navigating the osteoarthritis melody through the CCL2/CCR2 axis for innovative therapeutic avenues. Front Immunol. 2024;15:1387651.
pubmed: 39076996 pmcid: 11284107 doi: 10.3389/fimmu.2024.1387651
Arfaei R, Mikaeili N, Daj F, Boroumand A, Kheyri A, Yaraghi P, et al. Decoding the role of the CCL2/CCR2 axis in Alzheimer’s disease and innovating therapeutic approaches: keeping all options open. Int Immunopharmacol. 2024;135:112328.
pubmed: 38796962 doi: 10.1016/j.intimp.2024.112328
Taghavi Y, Hassanshahi G, Kounis NG, Koniari I, Khorramdelazad H. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal. 2019;13(4):451–62.
pubmed: 30607767 pmcid: 6946768 doi: 10.1007/s12079-018-00500-8
National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). Chin Med J. 2020;133(9):1087–95.
doi: 10.1097/CM9.0000000000000819
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976–88.
pubmed: 33558827 pmcid: 7859556 doi: 10.1016/j.csbj.2021.01.034
Amanatidou V, Zaravinos A, Apostolakis S, Spandidos DA. Chemokines in respiratory viral infections: focus on their diagnostic and therapeutic potential. Crit Rev Immunol. 2011;31(4):341–56.
pubmed: 21899514 doi: 10.1615/CritRevImmunol.v31.i4.40
Jin J, Lin J, Xu A, Lou J, Qian C, Li X, et al. CCL2: an important mediator between tumor cells and host cells in tumor microenvironment. Front Oncol. 2021;11:722916.
pubmed: 34386431 pmcid: 8354025 doi: 10.3389/fonc.2021.722916
Hamilton ST, Scott GM, Naing Z, Rawlinson WD. Human cytomegalovirus directly modulates expression of chemokine CCL2 (MCP-1) during viral replication. J Gen Virol. 2013;94(11):2495–503.
pubmed: 23939977 doi: 10.1099/vir.0.052878-0
Schneider D, Hong JY, Bowman ER, Chung Y, Nagarkar DR, McHenry CL, et al. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease. Am J Physiol Lung Cell Mol Physiol. 2013;304(3):L162–9.
pubmed: 23204071 doi: 10.1152/ajplung.00182.2012
Sabbatucci M, Covino DA, Purificato C, Mallano A, Federico M, Lu J, et al. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology. 2015;12:4.
pubmed: 25608886 pmcid: 4314729 doi: 10.1186/s12977-014-0132-6
Lai C, Wang K, Zhao Z, Zhang L, Gu H, Yang P, et al. CC motif chemokine ligand 2 (CCL2) mediates acute lung injury induced by lethal influenza H7N9 virus. Front Microbiol. 2017;8:587.
pubmed: 28421067 pmcid: 5379033 doi: 10.3389/fmicb.2017.00587
Bagheri-Hosseinabadi Z, Shamsizadeh A, Bahrehmand F, Abbasifard M. Evaluation of the relationship between serum interleukin-1β levels and expression of inflammasome-related genes in patients with COVID-19. BMC Immunol. 2023;24(1):30.
pubmed: 37723427 pmcid: 10507843 doi: 10.1186/s12865-023-00568-x
Olivarria G, Lane TE. Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection. Expert Rev Clin Immunol. 2022;18(1):57–66.
pubmed: 34964406 pmcid: 8851429 doi: 10.1080/1744666X.2022.2017282
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–44.
pubmed: 32398875 doi: 10.1038/s41591-020-0901-9
Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–70.
pubmed: 32228226 pmcid: 7170362 doi: 10.1080/22221751.2020.1747363
Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J Infect Dis. 2020;222(5):746–54.
pubmed: 32563194 doi: 10.1093/infdis/jiaa363
Xu Z-S, Shu T, Kang L, Wu D, Zhou X, Liao B-W, et al. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Signal Transduct Target Ther. 2020;5(1):100.
pubmed: 32561706 pmcid: 7303571 doi: 10.1038/s41392-020-0211-1
Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–45.
pubmed: 32416070 pmcid: 7227586 doi: 10.1016/j.cell.2020.04.026
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Abers MS, Delmonte OM, Ricotta EE, Fintzi J, Fink DL, de Jesus AAA, et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight. 2021;6(1):e144455.
pubmed: 33232303 pmcid: 7821609 doi: 10.1172/jci.insight.144455
Tincati C, Cannizzo ES, Giacomelli M, Badolato R, d’Arminio Monforte A, Marchetti G. Heightened circulating interferon-inducible chemokines, and activated pro-cytolytic Th1-cell phenotype features Covid-19 aggravation in the second week of illness. Front Immunol. 2020;11:580987.
pubmed: 33193384 pmcid: 7606391 doi: 10.3389/fimmu.2020.580987
Coperchini F, Chiovato L, Ricci G, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 2021;58:82–91.
pubmed: 33573850 pmcid: 7837329 doi: 10.1016/j.cytogfr.2020.12.005
Yang L, Nilsson-Payant BE, Han Y, Jaffré F, Zhu J, Wang P, et al. Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secreting CCL2. Stem Cell Rep. 2021;16(9):2274–88.
doi: 10.1016/j.stemcr.2021.07.012
Li M, Chen L, Gao Y, Li M, Wang X, Qiang L, et al. Recent advances targeting C-C chemokine receptor type 2 for liver diseases in monocyte/macrophage. Liver Int. 2020;40(12):2928–36.
pubmed: 33025657 doi: 10.1111/liv.14687
Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza a virus. Am J Pathol. 2000;156(6):1951–9.
pubmed: 10854218 pmcid: 1850091 doi: 10.1016/S0002-9440(10)65068-7
Lin S-J, Lo M, Kuo R-L, Shih S-R, Ojcius DM, Lu J, et al. The pathological effects of CCR2 + inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection. J Biomed Sci. 2014;21(1):99.
pubmed: 25407417 pmcid: 4243311 doi: 10.1186/s12929-014-0099-6
van Helden MJ, Zaiss DM, Sijts AJ. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS ONE. 2012;7(12):e52027.
pubmed: 23272202 pmcid: 3521727 doi: 10.1371/journal.pone.0052027
Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–8.
pubmed: 33307546 doi: 10.1038/s41586-020-03065-y
Sharif-Zak M, Abbasi-Jorjandi M, Asadikaram G, Ghoreshi ZA, Rezazadeh-Jabalbarzi M, Afsharipur A, et al. CCR2 and DPP9 expression in the peripheral blood of COVID-19 patients: influences of the disease severity and gender. Immunobiology. 2022;227(2):152184.
pubmed: 35131543 pmcid: 8806394 doi: 10.1016/j.imbio.2022.152184
Teng K-Y, Han J, Zhang X, Hsu S-H, He S, Wani NA, et al. Blocking the CCL2–CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther. 2017;16(2):312–22.
pubmed: 27980102 doi: 10.1158/1535-7163.MCT-16-0124
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66(1):157–67.
pubmed: 26452628 doi: 10.1136/gutjnl-2015-310514
Winter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H, Schumski A, et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab. 2018;28(1):175–82.
pubmed: 29861387 doi: 10.1016/j.cmet.2018.05.002
Okamoto M, Toyama M, Baba M. The chemokine receptor antagonist cenicriviroc inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;182:104902.
pubmed: 32739404 pmcid: 7392080 doi: 10.1016/j.antiviral.2020.104902
Vanderheiden A, Thomas J, Soung AL, Davis-Gardner ME, Floyd K, Jin F, et al. CCR2 signaling restricts SARS-CoV-2 infection. mBio. 2021;12(6):e0274921.
pubmed: 34749524 doi: 10.1128/mBio.02749-21

Auteurs

Vahid Bagheri (V)

Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

Hossein Khorramdelazad (H)

Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

Mehdi Kafi (M)

Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

Mitra Abbasifard (M)

Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. dr.mabbasifard@gmail.com.
Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. dr.mabbasifard@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH