Chemokine CCL2 and its receptor CCR2 in different age groups of patients with COVID-19.
CCL2
CCR2
COVID-19
Chemokine
SARS-CoV-2 infection
Journal
BMC immunology
ISSN: 1471-2172
Titre abrégé: BMC Immunol
Pays: England
ID NLM: 100966980
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
06
08
2024
accepted:
14
10
2024
medline:
26
10
2024
pubmed:
26
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Despite the development of various antiviral drugs, most of them are not effective in the treatment of coronavirus disease 2019 (COVID-19) as a hyperinflammatory disorder. Chemokine (C-C motif) ligand 2 (CCL2) is one of the critical CC chemokines involved in the pathogenesis and severity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This study aimed to investigate the expression of CCL2 and CC chemokine receptor 2 (CCR2) in COVID-19 patients. Peripheral blood samples were collected from 60 confirmed COVID-19 patients and 60 age-matched healthy subjects. The ages of the subjects were categorized as follows: up to 20 years, 20 to 40 years, 40 to 60 years, and more than 60 years. CCL2 serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). CCR2 gene expression in peripheral blood mononuclear cells (PBMCs) was measured employing real-time polymerase chain reaction (PCR). In all age groups, CCL2 serum levels were significantly elevated in patients compared to healthy controls (P < 0.0001). CCL2 levels were higher in severe patients than in moderate patients. Moreover, CCR2 expression by PBMCs was higher in patients compared to control subjects. However, a significant difference between patients and controls over 60 years of age was identified (P = 0.0353). There was no significant difference in CCR2 expression between moderate and severe COVID-19 patients. Taken together, the findings demonstrate that CCL2 and CCR2 are upregulated in COVID-19 patients at protein and mRNA levels, respectively. Therefore, the CCL2/CCR2 axis may be a potential therapeutic target in order to improve patient outcomes.
Sections du résumé
BACKGROUND
BACKGROUND
Despite the development of various antiviral drugs, most of them are not effective in the treatment of coronavirus disease 2019 (COVID-19) as a hyperinflammatory disorder. Chemokine (C-C motif) ligand 2 (CCL2) is one of the critical CC chemokines involved in the pathogenesis and severity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This study aimed to investigate the expression of CCL2 and CC chemokine receptor 2 (CCR2) in COVID-19 patients.
METHODS
METHODS
Peripheral blood samples were collected from 60 confirmed COVID-19 patients and 60 age-matched healthy subjects. The ages of the subjects were categorized as follows: up to 20 years, 20 to 40 years, 40 to 60 years, and more than 60 years. CCL2 serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). CCR2 gene expression in peripheral blood mononuclear cells (PBMCs) was measured employing real-time polymerase chain reaction (PCR).
RESULTS
RESULTS
In all age groups, CCL2 serum levels were significantly elevated in patients compared to healthy controls (P < 0.0001). CCL2 levels were higher in severe patients than in moderate patients. Moreover, CCR2 expression by PBMCs was higher in patients compared to control subjects. However, a significant difference between patients and controls over 60 years of age was identified (P = 0.0353). There was no significant difference in CCR2 expression between moderate and severe COVID-19 patients.
CONCLUSIONS
CONCLUSIONS
Taken together, the findings demonstrate that CCL2 and CCR2 are upregulated in COVID-19 patients at protein and mRNA levels, respectively. Therefore, the CCL2/CCR2 axis may be a potential therapeutic target in order to improve patient outcomes.
Identifiants
pubmed: 39455952
doi: 10.1186/s12865-024-00662-8
pii: 10.1186/s12865-024-00662-8
doi:
Substances chimiques
Receptors, CCR2
0
Chemokine CCL2
0
CCR2 protein, human
0
CCL2 protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
72Informations de copyright
© 2024. The Author(s).
Références
Sun J, He W-T, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med. 2020;26(5):483–95.
pubmed: 32359479
pmcid: 7118693
doi: 10.1016/j.molmed.2020.02.008
Tsang HF, Chan LWC, Cho WCS, Yu ACS, Yim AKY, Chan AKC, et al. An update on COVID-19 pandemic: the epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev Anti Infect Ther. 2021;19(7):877–88.
pubmed: 33306423
doi: 10.1080/14787210.2021.1863146
Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A systematic review of COVID-19 epidemiology based on current evidence. J Clin Med. 2020;9(4):967.
pubmed: 32244365
pmcid: 7231098
doi: 10.3390/jcm9040967
Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372.
pubmed: 32230900
pmcid: 7232198
doi: 10.3390/v12040372
Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; coronavirus disease-19). Clin Exp Pediatr. 2020;63(4):119–24.
pubmed: 32252141
pmcid: 7170784
doi: 10.3345/cep.2020.00493
Rokni M, Heidari Nia M, Sarhadi M, Mirinejad S, Sargazi S, Moudi M, et al. Association of TMPRSS2 gene polymorphisms with COVID-19 severity and mortality: a case-control study with computational analyses. Appl Biochem Biotechnol. 2022;194(8):3507–26.
pubmed: 35386063
pmcid: 8986508
doi: 10.1007/s12010-022-03885-w
Chen R, Lan Z, Ye J, Pang L, Liu Y, Wu W, et al. Cytokine storm: the primary determinant for the pathophysiological evolution of COVID-19 deterioration. Front Immunol. 2021;12:589095.
pubmed: 33995341
pmcid: 8115911
doi: 10.3389/fimmu.2021.589095
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66–70.
pubmed: 32418715
pmcid: 7204669
doi: 10.1016/j.cytogfr.2020.05.002
Khosroshahi LM, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol. 2021;93:107364.
doi: 10.1016/j.intimp.2020.107364
Heidari Nia M, Rokni M, Mirinejad S, Kargar M, Rahdar S, Sargazi S, et al. Association of polymorphisms in tumor necrosis factors with SARS-CoV‐2 infection and mortality rate: a case‐control study and in silico analyses. J Med Virol. 2022;94(4):1502–12.
pubmed: 34821383
doi: 10.1002/jmv.27477
Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV‐2 during an outbreak in Iran: comparison with SARS and MERS. Rev Med Virol. 2020;30(3):e2107.
pubmed: 32267987
pmcid: 7235481
doi: 10.1002/rmv.2107
Rokni M, Ahmadikia K, Asghari S, Mashaei S, Hassanali F. Comparison of clinical, para-clinical and laboratory findings in survived and deceased patients with COVID-19: diagnostic role of inflammatory indications in determining the severity of illness. BMC Infect Dis. 2020;20:869.
pubmed: 33225909
pmcid: 7680983
doi: 10.1186/s12879-020-05540-3
Rokni M, Hamblin MR, Rezaei N. Cytokines and COVID-19: friends or foes? Hum Vaccine Immunother. 2020;16(10):2363–5.
doi: 10.1080/21645515.2020.1799669
Sargazi S, Sheervalilou R, Rokni M, Shirvaliloo M, Shahraki O, Rezaei N. The role of autophagy in controlling SARS-CoV‐2 infection: an overview on virophagy‐mediated molecular drug targets. Cell Biol Int. 2021;45(8):1599–612.
pubmed: 33818861
pmcid: 8251464
doi: 10.1002/cbin.11609
Bagheri V. Pharmacological targeting of HMGB-1 translocation: a potential therapeutic strategy for COVID-19. Pharmacol Res. 2022;184:106455.
pubmed: 36116707
pmcid: 9477604
doi: 10.1016/j.phrs.2022.106455
Rokni M, Sarhadi M, Heidari Nia M, Mohamed Khosroshahi L, Asghari S, Sargazi S, et al. Single nucleotide polymorphisms located in TNFA, IL1RN, IL6R, and IL6 genes are associated with COVID-19 risk and severity in an Iranian population. Cell Biol Int. 2022;46(7):1109–27.
pubmed: 35521908
pmcid: 9347541
doi: 10.1002/cbin.11807
Hassanshahi G, Arababadi MK, Khoramdelazad H, Yaghini N, Zarandi ER. Assessment of CXCL12 (SDF-1α) polymorphisms and its serum level in posttransfusion occult HBV-infected patients in Southeastern Iran. Arch Med Res. 2010;41(5):338–42.
pubmed: 20851290
doi: 10.1016/j.arcmed.2010.07.001
Aminzadeh F, Ghorashi Z, Nabati S, Ghasemshirazi M, Arababadi MK, Shamsizadeh A, et al. Differential expression of CXC chemokines CXCL 10 and CXCL 12 in term and pre-term neonates and their mothers. Am J Reprod Immunol. 2012;68(4):338–44.
pubmed: 22738089
doi: 10.1111/j.1600-0897.2012.01167.x
Azin H, Vazirinejad R, Ahmadabadi BN, Khorramdelazad H, Zarandi ER, Arababadi MK, et al. The SDF-1 3′ a genetic variation of the chemokine SDF-1α (CXCL12) in parallel with its increased circulating levels is associated with susceptibility to MS: a study on Iranian multiple sclerosis patients. J Mol Neurosci. 2012;47:431–6.
pubmed: 22125123
doi: 10.1007/s12031-011-9672-6
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32.
pubmed: 32446778
pmcid: 7211650
doi: 10.1016/j.cytogfr.2020.05.003
Pum A, Ennemoser M, Adage T, Kungl AJ. Cytokines and chemokines in SARS-CoV-2 infections—therapeutic strategies targeting cytokine storm. Biomolecules. 2021;11(1):91.
pubmed: 33445810
pmcid: 7828218
doi: 10.3390/biom11010091
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible treatments: all options on the table. Int Immunopharmacol. 2022;113:109325.
pubmed: 36252475
pmcid: 9561120
doi: 10.1016/j.intimp.2022.109325
Moadab F, Khorramdelazad H, Abbasifard M. Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches. Life Sci. 2021;269:119034.
pubmed: 33453247
doi: 10.1016/j.lfs.2021.119034
Vakilian A, Khorramdelazad H, Heidari P, Rezaei ZS, Hassanshahi G. CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int. 2017;103:1–7.
pubmed: 28025034
doi: 10.1016/j.neuint.2016.12.013
Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine. 2018;110:226–31.
pubmed: 29277337
doi: 10.1016/j.cyto.2017.12.010
Abbasifard M, Khorramdelazad H. Harmonizing hope: navigating the osteoarthritis melody through the CCL2/CCR2 axis for innovative therapeutic avenues. Front Immunol. 2024;15:1387651.
pubmed: 39076996
pmcid: 11284107
doi: 10.3389/fimmu.2024.1387651
Arfaei R, Mikaeili N, Daj F, Boroumand A, Kheyri A, Yaraghi P, et al. Decoding the role of the CCL2/CCR2 axis in Alzheimer’s disease and innovating therapeutic approaches: keeping all options open. Int Immunopharmacol. 2024;135:112328.
pubmed: 38796962
doi: 10.1016/j.intimp.2024.112328
Taghavi Y, Hassanshahi G, Kounis NG, Koniari I, Khorramdelazad H. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal. 2019;13(4):451–62.
pubmed: 30607767
pmcid: 6946768
doi: 10.1007/s12079-018-00500-8
National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). Chin Med J. 2020;133(9):1087–95.
doi: 10.1097/CM9.0000000000000819
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976–88.
pubmed: 33558827
pmcid: 7859556
doi: 10.1016/j.csbj.2021.01.034
Amanatidou V, Zaravinos A, Apostolakis S, Spandidos DA. Chemokines in respiratory viral infections: focus on their diagnostic and therapeutic potential. Crit Rev Immunol. 2011;31(4):341–56.
pubmed: 21899514
doi: 10.1615/CritRevImmunol.v31.i4.40
Jin J, Lin J, Xu A, Lou J, Qian C, Li X, et al. CCL2: an important mediator between tumor cells and host cells in tumor microenvironment. Front Oncol. 2021;11:722916.
pubmed: 34386431
pmcid: 8354025
doi: 10.3389/fonc.2021.722916
Hamilton ST, Scott GM, Naing Z, Rawlinson WD. Human cytomegalovirus directly modulates expression of chemokine CCL2 (MCP-1) during viral replication. J Gen Virol. 2013;94(11):2495–503.
pubmed: 23939977
doi: 10.1099/vir.0.052878-0
Schneider D, Hong JY, Bowman ER, Chung Y, Nagarkar DR, McHenry CL, et al. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease. Am J Physiol Lung Cell Mol Physiol. 2013;304(3):L162–9.
pubmed: 23204071
doi: 10.1152/ajplung.00182.2012
Sabbatucci M, Covino DA, Purificato C, Mallano A, Federico M, Lu J, et al. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology. 2015;12:4.
pubmed: 25608886
pmcid: 4314729
doi: 10.1186/s12977-014-0132-6
Lai C, Wang K, Zhao Z, Zhang L, Gu H, Yang P, et al. CC motif chemokine ligand 2 (CCL2) mediates acute lung injury induced by lethal influenza H7N9 virus. Front Microbiol. 2017;8:587.
pubmed: 28421067
pmcid: 5379033
doi: 10.3389/fmicb.2017.00587
Bagheri-Hosseinabadi Z, Shamsizadeh A, Bahrehmand F, Abbasifard M. Evaluation of the relationship between serum interleukin-1β levels and expression of inflammasome-related genes in patients with COVID-19. BMC Immunol. 2023;24(1):30.
pubmed: 37723427
pmcid: 10507843
doi: 10.1186/s12865-023-00568-x
Olivarria G, Lane TE. Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection. Expert Rev Clin Immunol. 2022;18(1):57–66.
pubmed: 34964406
pmcid: 8851429
doi: 10.1080/1744666X.2022.2017282
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–44.
pubmed: 32398875
doi: 10.1038/s41591-020-0901-9
Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–70.
pubmed: 32228226
pmcid: 7170362
doi: 10.1080/22221751.2020.1747363
Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J Infect Dis. 2020;222(5):746–54.
pubmed: 32563194
doi: 10.1093/infdis/jiaa363
Xu Z-S, Shu T, Kang L, Wu D, Zhou X, Liao B-W, et al. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Signal Transduct Target Ther. 2020;5(1):100.
pubmed: 32561706
pmcid: 7303571
doi: 10.1038/s41392-020-0211-1
Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–45.
pubmed: 32416070
pmcid: 7227586
doi: 10.1016/j.cell.2020.04.026
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
pubmed: 31986264
pmcid: 7159299
doi: 10.1016/S0140-6736(20)30183-5
Abers MS, Delmonte OM, Ricotta EE, Fintzi J, Fink DL, de Jesus AAA, et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight. 2021;6(1):e144455.
pubmed: 33232303
pmcid: 7821609
doi: 10.1172/jci.insight.144455
Tincati C, Cannizzo ES, Giacomelli M, Badolato R, d’Arminio Monforte A, Marchetti G. Heightened circulating interferon-inducible chemokines, and activated pro-cytolytic Th1-cell phenotype features Covid-19 aggravation in the second week of illness. Front Immunol. 2020;11:580987.
pubmed: 33193384
pmcid: 7606391
doi: 10.3389/fimmu.2020.580987
Coperchini F, Chiovato L, Ricci G, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 2021;58:82–91.
pubmed: 33573850
pmcid: 7837329
doi: 10.1016/j.cytogfr.2020.12.005
Yang L, Nilsson-Payant BE, Han Y, Jaffré F, Zhu J, Wang P, et al. Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secreting CCL2. Stem Cell Rep. 2021;16(9):2274–88.
doi: 10.1016/j.stemcr.2021.07.012
Li M, Chen L, Gao Y, Li M, Wang X, Qiang L, et al. Recent advances targeting C-C chemokine receptor type 2 for liver diseases in monocyte/macrophage. Liver Int. 2020;40(12):2928–36.
pubmed: 33025657
doi: 10.1111/liv.14687
Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza a virus. Am J Pathol. 2000;156(6):1951–9.
pubmed: 10854218
pmcid: 1850091
doi: 10.1016/S0002-9440(10)65068-7
Lin S-J, Lo M, Kuo R-L, Shih S-R, Ojcius DM, Lu J, et al. The pathological effects of CCR2 + inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection. J Biomed Sci. 2014;21(1):99.
pubmed: 25407417
pmcid: 4243311
doi: 10.1186/s12929-014-0099-6
van Helden MJ, Zaiss DM, Sijts AJ. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS ONE. 2012;7(12):e52027.
pubmed: 23272202
pmcid: 3521727
doi: 10.1371/journal.pone.0052027
Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–8.
pubmed: 33307546
doi: 10.1038/s41586-020-03065-y
Sharif-Zak M, Abbasi-Jorjandi M, Asadikaram G, Ghoreshi ZA, Rezazadeh-Jabalbarzi M, Afsharipur A, et al. CCR2 and DPP9 expression in the peripheral blood of COVID-19 patients: influences of the disease severity and gender. Immunobiology. 2022;227(2):152184.
pubmed: 35131543
pmcid: 8806394
doi: 10.1016/j.imbio.2022.152184
Teng K-Y, Han J, Zhang X, Hsu S-H, He S, Wani NA, et al. Blocking the CCL2–CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther. 2017;16(2):312–22.
pubmed: 27980102
doi: 10.1158/1535-7163.MCT-16-0124
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66(1):157–67.
pubmed: 26452628
doi: 10.1136/gutjnl-2015-310514
Winter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H, Schumski A, et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab. 2018;28(1):175–82.
pubmed: 29861387
doi: 10.1016/j.cmet.2018.05.002
Okamoto M, Toyama M, Baba M. The chemokine receptor antagonist cenicriviroc inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;182:104902.
pubmed: 32739404
pmcid: 7392080
doi: 10.1016/j.antiviral.2020.104902
Vanderheiden A, Thomas J, Soung AL, Davis-Gardner ME, Floyd K, Jin F, et al. CCR2 signaling restricts SARS-CoV-2 infection. mBio. 2021;12(6):e0274921.
pubmed: 34749524
doi: 10.1128/mBio.02749-21