CDK4/6 inhibition initiates cell cycle arrest by nuclear translocation of RB and induces a multistep molecular response.
Journal
Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
05
12
2023
accepted:
17
10
2024
revised:
05
09
2024
medline:
27
10
2024
pubmed:
27
10
2024
entrez:
27
10
2024
Statut:
epublish
Résumé
CDK4/6 inhibitors are standard of care in the treatment of metastatic breast cancer. Treatment regimen consists of a combination with endocrine therapy, since their therapeutic efficacy as monotherapy in most clinical trials was rather limited. Thus, understanding the molecular mechanisms that underlie response to therapy might allow for the development of an improved therapy design. We analyzed the response to the CDK4/6 inhibitor palbociclib in bladder cancer cells over a 48-hour time course using RNA sequencing and identified a multi-step mechanism of response. We next translated these results to the molecular mechanism in bladder cancer cells upon PD treatment. The initial step is characterized by translocation of the RB protein into the nucleus by activation of importin α/β, a mechanism that requires the NLS sequence. In parallel, RB is proteolyzed in the cytoplasm, a process regulated by gankyrin and the SCF complex. Only hypophosphorylated RB accumulates in the nucleus, which is an essential step for an efficient therapy response by initiating G1 arrest. This might explain the poor response in RB negative or mutated patients. At later stages during therapy, increased expression of the MiT/TFE protein family leads to lysosomal biogenesis which is essential to maintain this response. Lastly, cancer cells either undergo senescence and apoptosis or develop mechanisms of resistance following CDK4/6 inhibition.
Identifiants
pubmed: 39461947
doi: 10.1038/s41420-024-02218-6
pii: 10.1038/s41420-024-02218-6
doi:
Types de publication
Journal Article
Langues
eng
Pagination
453Informations de copyright
© 2024. The Author(s).
Références
Grinshpun A, Tolaney SM, Burstein HJ, Jeselsohn R, Mayer EL. The dilemma of selecting a first line CDK4/6 inhibitor for hormone receptor-positive/HER2-negative metastatic breast cancer. NPJ Breast Cancer. 2023;9:15.
pubmed: 36949066
pmcid: 10033931
doi: 10.1038/s41523-023-00520-7
Tong Z, Sathe A, Ebner B, Qi P, Veltkamp C, Gschwend JE, et al. Functional genomics identifies predictive markers and clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer. J Exp Clin Cancer Res. 2019;38:322.
pubmed: 31331377
pmcid: 6647307
doi: 10.1186/s13046-019-1322-9
Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science. 2022;375:eabc1495.
pubmed: 35025636
pmcid: 9048628
doi: 10.1126/science.abc1495
Bi H, Shang J, Zou X, Xu J, Han Y. Palbociclib induces cell senescence and apoptosis of gastric cancer cells by inhibiting the Notch pathway. Oncol Lett. 2021;22:603.
pubmed: 34188705
pmcid: 8227472
doi: 10.3892/ol.2021.12864
Liu C, Konagaya Y, Chung M, Daigh LH, Fan Y, Yang HW, et al. Altered G1 signaling order and commitment point in cells proliferating without CDK4/6 activity. Nat Commun. 2020;11:5305.
pubmed: 33082317
pmcid: 7576148
doi: 10.1038/s41467-020-18966-9
Tong Z, Zhao Y, Bai S, Ebner B, Lienhard L, Zhao Y, et al. The mechanism of resistance to CDK4/6 inhibition and novel combination therapy with RNR inhibition for chemo-resistant bladder cancer. Cancer Commun (Lond). 2024;44:700–4.
pubmed: 38468431
doi: 10.1002/cac2.12532
Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 2016;76:2301–13.
pubmed: 27020857
pmcid: 5426059
doi: 10.1158/0008-5472.CAN-15-0728
de Leeuw R, McNair C, Schiewer MJ, Neupane NP, Brand LJ, Augello MA, et al. MAPK reliance via acquired CDK4/6 inhibitor resistance in cancer. Clin Cancer Res. 2018;24:4201–14.
pubmed: 29739788
pmcid: 6125187
doi: 10.1158/1078-0432.CCR-18-0410
Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer. 2022;22:356–72.
pubmed: 35304604
pmcid: 9149100
doi: 10.1038/s41568-022-00456-3
André F, Su F, Solovieff N, Hortobagyi G, Chia S, Neven P, et al. Pooled ctDNA analysis of MONALEESA phase III advanced breast cancer trials. Ann Oncol. 2023;34:1003–14.
pubmed: 37673211
doi: 10.1016/j.annonc.2023.08.011
Uchida C. Roles of pRB in the regulation of nucleosome and chromatin structures. Biomed Res Int. 2016;2016:5959721.
pubmed: 28101510
pmcid: 5215604
doi: 10.1155/2016/5959721
Hilgendorf KI, Leshchiner ES, Nedelcu S, Maynard MA, Calo E, Ianari A, et al. The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev. 2013;27:1003–15.
pubmed: 23618872
pmcid: 3656319
doi: 10.1101/gad.211326.112
Nicolay BN, Danielian PS, Kottakis F, Lapek JD, Sanidas I, Miles WO, et al. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev. 2015;29:1875–89.
pubmed: 26314710
pmcid: 4573859
doi: 10.1101/gad.264127.115
Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta. 2014;1843:150–62.
pubmed: 23466868
doi: 10.1016/j.bbamcr.2013.02.028
Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14:369–81.
pubmed: 23657496
doi: 10.1038/nrm3582
Saha A, Deshaies RJ. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell. 2008;32:21–31.
pubmed: 18851830
pmcid: 2644375
doi: 10.1016/j.molcel.2008.08.021
Liu F, Korc M. Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012;11:2138–48.
pubmed: 22869556
pmcid: 3752412
doi: 10.1158/1535-7163.MCT-12-0562
Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3:1427–38.
pubmed: 15542782
doi: 10.1158/1535-7163.1427.3.11
Sathe A, Koshy N, Schmid SC, Thalgott M, Schwarzenböck SM, Krause BJ, et al. CDK4/6 Inhibition Controls Proliferation of Bladder Cancer and Transcription of RB1. J Urol. 2016;195:771–9.
pubmed: 26318986
doi: 10.1016/j.juro.2015.08.082
Gao J, Yang D, Cao R, Huang H, Ma J, Wang Z, et al. The role of Fbxo5 in the development of human malignant tumors. Am J Cancer Res. 2022;12:1456–64.
pubmed: 35530293
pmcid: 9077063
Yang C, Wang X. Lysosome biogenesis: regulation and functions. J Cell Biol. 2021;220:e202102001.
pubmed: 33950241
pmcid: 8105738
doi: 10.1083/jcb.202102001
Yin Q, Jian Y, Xu M, Huang X, Wang N, Liu Z, et al. CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J Cell Biol. 2020;219:e201911036.
pubmed: 32662822
pmcid: 7401801
doi: 10.1083/jcb.201911036
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022;50:W739–W743.
pubmed: 35580060
pmcid: 9252834
doi: 10.1093/nar/gkac382
Kashyap D, Varshney N, Parmar HS, Jha HC. Gankyrin: At the crossroads of cancer diagnosis, disease prognosis, and development of efficient cancer therapeutics. Adv. Cancer Biol.—Metastasis. 2022;4:100023.
doi: 10.1016/j.adcanc.2021.100023
Mayer RJ, Fujita J. Gankyrin, the 26 S proteasome, the cell cycle and cancer. Biochem Soc Trans. 2006;34:746–8.
pubmed: 17052188
doi: 10.1042/BST0340746
Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell. 2005;8:75–87.
pubmed: 16023600
doi: 10.1016/j.ccr.2005.06.006
Huang Z, Li X, Tang B, Li H, Zhang J, Sun R, et al. SETDB1 modulates degradation of phosphorylated RB and anticancer efficacy of CDK4/6 inhibitors. Cancer Res. 2023;83:875–89.
pubmed: 36637424
doi: 10.1158/0008-5472.CAN-22-0264
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 2014;3:e02872.
pubmed: 24876129
pmcid: 4076869
doi: 10.7554/eLife.02872
Marfori M, Lonhienne TG, Forwood JK, Kobe B. Structural basis of high-affinity nuclear localization signal interactions with importin-α. Traffic. 2012;13:532–48.
pubmed: 22248489
doi: 10.1111/j.1600-0854.2012.01329.x
Kelley JB, Talley AM, Spencer A, Gioeli D, Paschal BM. Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors. BMC Cell Biol. 2010;11:63.
pubmed: 20701745
pmcid: 2929220
doi: 10.1186/1471-2121-11-63
Kosyna FK, Depping R. Controlling the gatekeeper: therapeutic targeting of nuclear transport. Cells. 2018;7:221.
pubmed: 30469340
pmcid: 6262578
doi: 10.3390/cells7110221
Klein FG, Granier C, Zhao Y, Pan Q, Tong Z, Gschwend JE, et al. Combination of talazoparib and palbociclib as a potent treatment strategy in bladder cancer. J Pers Med. 2021;11:340.
pubmed: 33923231
pmcid: 8145096
doi: 10.3390/jpm11050340
Miyamoto Y, Yamada K, Yoneda Y. Importin α: a key molecule in nuclear transport and non-transport functions. J Biochem. 2016;160:69–75.
pubmed: 27289017
doi: 10.1093/jb/mvw036
Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, et al. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem Biol. 2011;6:700–8.
pubmed: 21469738
pmcid: 3137676
doi: 10.1021/cb2000296
Valenzuela CA, Vargas L, Martinez V, Bravo S, Brown NE. Palbociclib-induced autophagy and senescence in gastric cancer cells. Exp Cell Res. 2017;360:390–6.
pubmed: 28947133
doi: 10.1016/j.yexcr.2017.09.031
Kositza J, Nguyen J, Hong T, Mantwill K, Nawroth R. Identification of the KIF and MCM protein families as novel targets for combination therapy with CDK4/6 inhibitors in bladder cancer. Urol Oncol. 2023;41:253.e11–253.e20.
pubmed: 36813612
doi: 10.1016/j.urolonc.2023.01.010
Wander SA, Cohen O, Gong X, Johnson GN, Buendia-Buendia JE, Lloyd MR, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 2020;10:1174–93.
pubmed: 32404308
pmcid: 8815415
doi: 10.1158/2159-8290.CD-19-1390
Álvarez-Fernández M, Malumbres M. Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell. 2020;37:514–29.
pubmed: 32289274
doi: 10.1016/j.ccell.2020.03.010
Liang H, Yang C, Zeng R, Song Y, Wang J, Xiong W, et al. Targeting CBX3 with a dual BET/PLK1 inhibitor enhances the antitumor efficacy of CDK4/6 inhibitors in prostate cancer. Adv Sci (Weinh). 2023;10:e2302368.
pubmed: 37949681
doi: 10.1002/advs.202302368
Pesch AM, Hirsh NH, Michmerhuizen AR, Jungles KM, Wilder-Romans K, Chandler BC, et al. RB expression confers sensitivity to CDK4/6 inhibitor-mediated radiosensitization across breast cancer subtypes. JCI Insight. 2022;7:e154402.
pubmed: 34932500
pmcid: 8855810
doi: 10.1172/jci.insight.154402
Huang Y, Wu H, Li X. Novel sequential treatment with palbociclib enhances the effect of cisplatin in RB-proficient triple-negative breast cancer. Cancer Cell Int. 2020;20:501.
pubmed: 33061853
pmcid: 7552520
doi: 10.1186/s12935-020-01597-x
Kwon Y, Kim JW, Jeoung JA, Kim M-S, Kang C. Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot. Mol Cells. 2017;40:607–12.
pubmed: 28927262
pmcid: 5638768
doi: 10.14348/molcells.2017.0151
Ying H, Xiao Z-XJ. Targeting retinoblastoma protein for degradation by proteasomes. Cell Cycle. 2006;5:506–8.
pubmed: 16552188
doi: 10.4161/cc.5.5.2515
Miettinen TP, Peltier J, Härtlova A, Gierliński M, Jansen VM, Trost M, et al. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J. 2018;37:e98359.
pubmed: 29669860
pmcid: 5978322
doi: 10.15252/embj.201798359
Zhang M, Kim S, Yang HW. Non-canonical pathway for Rb inactivation and external signaling coordinate cell-cycle entry without CDK4/6 activity. Nat Commun. 2023;14:7847.
pubmed: 38030655
pmcid: 10687137
doi: 10.1038/s41467-023-43716-y
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471–5.
pubmed: 28813415
pmcid: 5570667
doi: 10.1038/nature23465
Chaikovsky AC, Sage J. Beyond the Cell Cycle: enhancing the immune surveillance of tumors Via CDK4/6 inhibition. Mol Cancer Res. 2018;16:1454–7.
pubmed: 29934327
pmcid: 6170710
doi: 10.1158/1541-7786.MCR-18-0201
Scirocchi F, Scagnoli S, Botticelli A, Di Filippo A, Napoletano C, Zizzari IG, et al. Immune effects of CDK4/6 inhibitors in patients with HR+/HER2- metastatic breast cancer: Relief from immunosuppression is associated with clinical response. EBioMedicine. 2022;79:104010.
pubmed: 35477069
pmcid: 9061627
doi: 10.1016/j.ebiom.2022.104010
Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, et al. Mechanisms of CDK4/6 inhibitor resistance in luminal breast cancer. Front Pharmacol. 2020;11:580251.
pubmed: 33364954
pmcid: 7751736
doi: 10.3389/fphar.2020.580251
Lai AY, Sorrentino JA, Dragnev KH, Weiss JM, Owonikoko TK, Rytlewski JA, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy. J Immunother Cancer. 2020;8:e000847.
pubmed: 33004541
pmcid: 7534680
doi: 10.1136/jitc-2020-000847
Uzhachenko RV, Bharti V, Ouyang Z, Blevins A, Mont S, Saleh N, et al. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors. Cell Rep. 2021;35:108944.
pubmed: 33826903
pmcid: 8383195
doi: 10.1016/j.celrep.2021.108944
Zhang J, Dang F, Ren J, Wei W. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem Sci. 2018;43:1014–32.
pubmed: 30287140
pmcid: 6252278
doi: 10.1016/j.tibs.2018.09.004
Xiang W, Qi W, Li H, Sun J, Dong C, Ou H, et al. Palbociclib induces the apoptosis of lung squamous cell carcinoma cells via RB-independent STAT3 phosphorylation. Curr Oncol. 2022;29:5855–68.
pubmed: 36005200
pmcid: 9406926
doi: 10.3390/curroncol29080462
Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 2016;14:979–90.
pubmed: 26804906
pmcid: 4757440
doi: 10.1016/j.celrep.2015.12.094
Cretella D, Ravelli A, Fumarola C, La Monica S, Digiacomo G, Cavazzoni A, et al. The anti-tumor efficacy of CDK4/6 inhibition is enhanced by the combination with PI3K/AKT/mTOR inhibitors through impairment of glucose metabolism in TNBC cells. J Exp Clin Cancer Res. 2018;37:72.
pubmed: 29587820
pmcid: 5872523
doi: 10.1186/s13046-018-0741-3
Costa C, Wang Y, Ly A, Hosono Y, Murchie E, Walmsley CS, et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov. 2020;10:72–85.
pubmed: 31594766
doi: 10.1158/2159-8290.CD-18-0830
Jansen VM, Bhola NE, Bauer JA, Formisano L, Lee K-M, Hutchinson KE, et al. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer. Cancer Res. 2017;77:2488–99.
pubmed: 28249908
pmcid: 5421398
doi: 10.1158/0008-5472.CAN-16-2653
Zhang Z, Wang J, Shanmugasundaram KB, Yeo B, Möller A, Wuethrich A, et al. Tracking drug-induced epithelial-mesenchymal transition in breast cancer by a microfluidic surface-enhanced raman spectroscopy immunoassay. Small. 2020;16:e1905614.
pubmed: 32141228
doi: 10.1002/smll.201905614
Rencuzogulları O, Yerlikaya PO, Gürkan AÇ, Arısan ED, Telci D. Palbociclib, a selective CDK4/6 inhibitor, restricts cell survival and epithelial-mesenchymal transition in Panc-1 and MiaPaCa-2 pancreatic cancer cells. J Cell Biochem. 2020;121:508–23.
pubmed: 31264276
doi: 10.1002/jcb.29249
Belli S, Esposito D, Allotta A, Servetto A, Ciciola P, Pesapane A, et al. Pak1 pathway hyper-activation mediates resistance to endocrine therapy and CDK4/6 inhibitors in ER+ breast cancer. NPJ Breast Cancer. 2023;9:48.
pubmed: 37258566
pmcid: 10232479
doi: 10.1038/s41523-023-00556-9
Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res. 2022;24:17.
pubmed: 35248122
pmcid: 8898415
doi: 10.1186/s13058-022-01510-6
Zacksenhaus E, Jiang Z, Hei YJ, Phillips RA, Gallie BL. Nuclear localization conferred by the pocket domain of the retinoblastoma gene product. Biochim Biophys Acta. 1999;1451:288–96.
pubmed: 10556583
doi: 10.1016/S0167-4889(99)00103-2
Rubio C, Martínez-Fernández M, Segovia C, Lodewijk I, Suarez-Cabrera C, Segrelles C, et al. CDK4/6 inhibitor as a novel therapeutic approach for advanced bladder cancer independently of RB1 status. Clin Cancer Res. 2019;25:390–402.
pubmed: 30242024
doi: 10.1158/1078-0432.CCR-18-0685
Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 2018;34:893–905. e8
pubmed: 30537512
pmcid: 6294301
doi: 10.1016/j.ccell.2018.11.006
Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. The impact of amplification on differential expression analyses by RNA-seq. Sci Rep. 2016;6:25533.
pubmed: 27156886
pmcid: 4860583
doi: 10.1038/srep25533
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.
pubmed: 26000488
pmcid: 4481139
doi: 10.1016/j.cell.2015.05.002
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
pubmed: 22930834
pmcid: 5554542
doi: 10.1038/nmeth.2089
Posch A. (ed.) Proteomic profiling: methods and protocols. Springer US; 2021.
Bio-Rad Laboratories, Inc. ChemiDoc and ChemiDoc MP imaging systems with image Lab Touch Software: user guide version 2.4. Bio-Rad Laboratories, Inc.; 2019.