CDK4/6 inhibition initiates cell cycle arrest by nuclear translocation of RB and induces a multistep molecular response.


Journal

Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035

Informations de publication

Date de publication:
26 Oct 2024
Historique:
received: 05 12 2023
accepted: 17 10 2024
revised: 05 09 2024
medline: 27 10 2024
pubmed: 27 10 2024
entrez: 27 10 2024
Statut: epublish

Résumé

CDK4/6 inhibitors are standard of care in the treatment of metastatic breast cancer. Treatment regimen consists of a combination with endocrine therapy, since their therapeutic efficacy as monotherapy in most clinical trials was rather limited. Thus, understanding the molecular mechanisms that underlie response to therapy might allow for the development of an improved therapy design. We analyzed the response to the CDK4/6 inhibitor palbociclib in bladder cancer cells over a 48-hour time course using RNA sequencing and identified a multi-step mechanism of response. We next translated these results to the molecular mechanism in bladder cancer cells upon PD treatment. The initial step is characterized by translocation of the RB protein into the nucleus by activation of importin α/β, a mechanism that requires the NLS sequence. In parallel, RB is proteolyzed in the cytoplasm, a process regulated by gankyrin and the SCF complex. Only hypophosphorylated RB accumulates in the nucleus, which is an essential step for an efficient therapy response by initiating G1 arrest. This might explain the poor response in RB negative or mutated patients. At later stages during therapy, increased expression of the MiT/TFE protein family leads to lysosomal biogenesis which is essential to maintain this response. Lastly, cancer cells either undergo senescence and apoptosis or develop mechanisms of resistance following CDK4/6 inhibition.

Identifiants

pubmed: 39461947
doi: 10.1038/s41420-024-02218-6
pii: 10.1038/s41420-024-02218-6
doi:

Types de publication

Journal Article

Langues

eng

Pagination

453

Informations de copyright

© 2024. The Author(s).

Références

Grinshpun A, Tolaney SM, Burstein HJ, Jeselsohn R, Mayer EL. The dilemma of selecting a first line CDK4/6 inhibitor for hormone receptor-positive/HER2-negative metastatic breast cancer. NPJ Breast Cancer. 2023;9:15.
pubmed: 36949066 pmcid: 10033931 doi: 10.1038/s41523-023-00520-7
Tong Z, Sathe A, Ebner B, Qi P, Veltkamp C, Gschwend JE, et al. Functional genomics identifies predictive markers and clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer. J Exp Clin Cancer Res. 2019;38:322.
pubmed: 31331377 pmcid: 6647307 doi: 10.1186/s13046-019-1322-9
Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science. 2022;375:eabc1495.
pubmed: 35025636 pmcid: 9048628 doi: 10.1126/science.abc1495
Bi H, Shang J, Zou X, Xu J, Han Y. Palbociclib induces cell senescence and apoptosis of gastric cancer cells by inhibiting the Notch pathway. Oncol Lett. 2021;22:603.
pubmed: 34188705 pmcid: 8227472 doi: 10.3892/ol.2021.12864
Liu C, Konagaya Y, Chung M, Daigh LH, Fan Y, Yang HW, et al. Altered G1 signaling order and commitment point in cells proliferating without CDK4/6 activity. Nat Commun. 2020;11:5305.
pubmed: 33082317 pmcid: 7576148 doi: 10.1038/s41467-020-18966-9
Tong Z, Zhao Y, Bai S, Ebner B, Lienhard L, Zhao Y, et al. The mechanism of resistance to CDK4/6 inhibition and novel combination therapy with RNR inhibition for chemo-resistant bladder cancer. Cancer Commun (Lond). 2024;44:700–4.
pubmed: 38468431 doi: 10.1002/cac2.12532
Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 2016;76:2301–13.
pubmed: 27020857 pmcid: 5426059 doi: 10.1158/0008-5472.CAN-15-0728
de Leeuw R, McNair C, Schiewer MJ, Neupane NP, Brand LJ, Augello MA, et al. MAPK reliance via acquired CDK4/6 inhibitor resistance in cancer. Clin Cancer Res. 2018;24:4201–14.
pubmed: 29739788 pmcid: 6125187 doi: 10.1158/1078-0432.CCR-18-0410
Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer. 2022;22:356–72.
pubmed: 35304604 pmcid: 9149100 doi: 10.1038/s41568-022-00456-3
André F, Su F, Solovieff N, Hortobagyi G, Chia S, Neven P, et al. Pooled ctDNA analysis of MONALEESA phase III advanced breast cancer trials. Ann Oncol. 2023;34:1003–14.
pubmed: 37673211 doi: 10.1016/j.annonc.2023.08.011
Uchida C. Roles of pRB in the regulation of nucleosome and chromatin structures. Biomed Res Int. 2016;2016:5959721.
pubmed: 28101510 pmcid: 5215604 doi: 10.1155/2016/5959721
Hilgendorf KI, Leshchiner ES, Nedelcu S, Maynard MA, Calo E, Ianari A, et al. The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev. 2013;27:1003–15.
pubmed: 23618872 pmcid: 3656319 doi: 10.1101/gad.211326.112
Nicolay BN, Danielian PS, Kottakis F, Lapek JD, Sanidas I, Miles WO, et al. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev. 2015;29:1875–89.
pubmed: 26314710 pmcid: 4573859 doi: 10.1101/gad.264127.115
Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta. 2014;1843:150–62.
pubmed: 23466868 doi: 10.1016/j.bbamcr.2013.02.028
Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14:369–81.
pubmed: 23657496 doi: 10.1038/nrm3582
Saha A, Deshaies RJ. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell. 2008;32:21–31.
pubmed: 18851830 pmcid: 2644375 doi: 10.1016/j.molcel.2008.08.021
Liu F, Korc M. Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012;11:2138–48.
pubmed: 22869556 pmcid: 3752412 doi: 10.1158/1535-7163.MCT-12-0562
Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3:1427–38.
pubmed: 15542782 doi: 10.1158/1535-7163.1427.3.11
Sathe A, Koshy N, Schmid SC, Thalgott M, Schwarzenböck SM, Krause BJ, et al. CDK4/6 Inhibition Controls Proliferation of Bladder Cancer and Transcription of RB1. J Urol. 2016;195:771–9.
pubmed: 26318986 doi: 10.1016/j.juro.2015.08.082
Gao J, Yang D, Cao R, Huang H, Ma J, Wang Z, et al. The role of Fbxo5 in the development of human malignant tumors. Am J Cancer Res. 2022;12:1456–64.
pubmed: 35530293 pmcid: 9077063
Yang C, Wang X. Lysosome biogenesis: regulation and functions. J Cell Biol. 2021;220:e202102001.
pubmed: 33950241 pmcid: 8105738 doi: 10.1083/jcb.202102001
Yin Q, Jian Y, Xu M, Huang X, Wang N, Liu Z, et al. CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J Cell Biol. 2020;219:e201911036.
pubmed: 32662822 pmcid: 7401801 doi: 10.1083/jcb.201911036
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022;50:W739–W743.
pubmed: 35580060 pmcid: 9252834 doi: 10.1093/nar/gkac382
Kashyap D, Varshney N, Parmar HS, Jha HC. Gankyrin: At the crossroads of cancer diagnosis, disease prognosis, and development of efficient cancer therapeutics. Adv. Cancer Biol.—Metastasis. 2022;4:100023.
doi: 10.1016/j.adcanc.2021.100023
Mayer RJ, Fujita J. Gankyrin, the 26 S proteasome, the cell cycle and cancer. Biochem Soc Trans. 2006;34:746–8.
pubmed: 17052188 doi: 10.1042/BST0340746
Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell. 2005;8:75–87.
pubmed: 16023600 doi: 10.1016/j.ccr.2005.06.006
Huang Z, Li X, Tang B, Li H, Zhang J, Sun R, et al. SETDB1 modulates degradation of phosphorylated RB and anticancer efficacy of CDK4/6 inhibitors. Cancer Res. 2023;83:875–89.
pubmed: 36637424 doi: 10.1158/0008-5472.CAN-22-0264
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 2014;3:e02872.
pubmed: 24876129 pmcid: 4076869 doi: 10.7554/eLife.02872
Marfori M, Lonhienne TG, Forwood JK, Kobe B. Structural basis of high-affinity nuclear localization signal interactions with importin-α. Traffic. 2012;13:532–48.
pubmed: 22248489 doi: 10.1111/j.1600-0854.2012.01329.x
Kelley JB, Talley AM, Spencer A, Gioeli D, Paschal BM. Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors. BMC Cell Biol. 2010;11:63.
pubmed: 20701745 pmcid: 2929220 doi: 10.1186/1471-2121-11-63
Kosyna FK, Depping R. Controlling the gatekeeper: therapeutic targeting of nuclear transport. Cells. 2018;7:221.
pubmed: 30469340 pmcid: 6262578 doi: 10.3390/cells7110221
Klein FG, Granier C, Zhao Y, Pan Q, Tong Z, Gschwend JE, et al. Combination of talazoparib and palbociclib as a potent treatment strategy in bladder cancer. J Pers Med. 2021;11:340.
pubmed: 33923231 pmcid: 8145096 doi: 10.3390/jpm11050340
Miyamoto Y, Yamada K, Yoneda Y. Importin α: a key molecule in nuclear transport and non-transport functions. J Biochem. 2016;160:69–75.
pubmed: 27289017 doi: 10.1093/jb/mvw036
Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, et al. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem Biol. 2011;6:700–8.
pubmed: 21469738 pmcid: 3137676 doi: 10.1021/cb2000296
Valenzuela CA, Vargas L, Martinez V, Bravo S, Brown NE. Palbociclib-induced autophagy and senescence in gastric cancer cells. Exp Cell Res. 2017;360:390–6.
pubmed: 28947133 doi: 10.1016/j.yexcr.2017.09.031
Kositza J, Nguyen J, Hong T, Mantwill K, Nawroth R. Identification of the KIF and MCM protein families as novel targets for combination therapy with CDK4/6 inhibitors in bladder cancer. Urol Oncol. 2023;41:253.e11–253.e20.
pubmed: 36813612 doi: 10.1016/j.urolonc.2023.01.010
Wander SA, Cohen O, Gong X, Johnson GN, Buendia-Buendia JE, Lloyd MR, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 2020;10:1174–93.
pubmed: 32404308 pmcid: 8815415 doi: 10.1158/2159-8290.CD-19-1390
Álvarez-Fernández M, Malumbres M. Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell. 2020;37:514–29.
pubmed: 32289274 doi: 10.1016/j.ccell.2020.03.010
Liang H, Yang C, Zeng R, Song Y, Wang J, Xiong W, et al. Targeting CBX3 with a dual BET/PLK1 inhibitor enhances the antitumor efficacy of CDK4/6 inhibitors in prostate cancer. Adv Sci (Weinh). 2023;10:e2302368.
pubmed: 37949681 doi: 10.1002/advs.202302368
Pesch AM, Hirsh NH, Michmerhuizen AR, Jungles KM, Wilder-Romans K, Chandler BC, et al. RB expression confers sensitivity to CDK4/6 inhibitor-mediated radiosensitization across breast cancer subtypes. JCI Insight. 2022;7:e154402.
pubmed: 34932500 pmcid: 8855810 doi: 10.1172/jci.insight.154402
Huang Y, Wu H, Li X. Novel sequential treatment with palbociclib enhances the effect of cisplatin in RB-proficient triple-negative breast cancer. Cancer Cell Int. 2020;20:501.
pubmed: 33061853 pmcid: 7552520 doi: 10.1186/s12935-020-01597-x
Kwon Y, Kim JW, Jeoung JA, Kim M-S, Kang C. Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot. Mol Cells. 2017;40:607–12.
pubmed: 28927262 pmcid: 5638768 doi: 10.14348/molcells.2017.0151
Ying H, Xiao Z-XJ. Targeting retinoblastoma protein for degradation by proteasomes. Cell Cycle. 2006;5:506–8.
pubmed: 16552188 doi: 10.4161/cc.5.5.2515
Miettinen TP, Peltier J, Härtlova A, Gierliński M, Jansen VM, Trost M, et al. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J. 2018;37:e98359.
pubmed: 29669860 pmcid: 5978322 doi: 10.15252/embj.201798359
Zhang M, Kim S, Yang HW. Non-canonical pathway for Rb inactivation and external signaling coordinate cell-cycle entry without CDK4/6 activity. Nat Commun. 2023;14:7847.
pubmed: 38030655 pmcid: 10687137 doi: 10.1038/s41467-023-43716-y
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471–5.
pubmed: 28813415 pmcid: 5570667 doi: 10.1038/nature23465
Chaikovsky AC, Sage J. Beyond the Cell Cycle: enhancing the immune surveillance of tumors Via CDK4/6 inhibition. Mol Cancer Res. 2018;16:1454–7.
pubmed: 29934327 pmcid: 6170710 doi: 10.1158/1541-7786.MCR-18-0201
Scirocchi F, Scagnoli S, Botticelli A, Di Filippo A, Napoletano C, Zizzari IG, et al. Immune effects of CDK4/6 inhibitors in patients with HR+/HER2- metastatic breast cancer: Relief from immunosuppression is associated with clinical response. EBioMedicine. 2022;79:104010.
pubmed: 35477069 pmcid: 9061627 doi: 10.1016/j.ebiom.2022.104010
Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, et al. Mechanisms of CDK4/6 inhibitor resistance in luminal breast cancer. Front Pharmacol. 2020;11:580251.
pubmed: 33364954 pmcid: 7751736 doi: 10.3389/fphar.2020.580251
Lai AY, Sorrentino JA, Dragnev KH, Weiss JM, Owonikoko TK, Rytlewski JA, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy. J Immunother Cancer. 2020;8:e000847.
pubmed: 33004541 pmcid: 7534680 doi: 10.1136/jitc-2020-000847
Uzhachenko RV, Bharti V, Ouyang Z, Blevins A, Mont S, Saleh N, et al. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors. Cell Rep. 2021;35:108944.
pubmed: 33826903 pmcid: 8383195 doi: 10.1016/j.celrep.2021.108944
Zhang J, Dang F, Ren J, Wei W. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem Sci. 2018;43:1014–32.
pubmed: 30287140 pmcid: 6252278 doi: 10.1016/j.tibs.2018.09.004
Xiang W, Qi W, Li H, Sun J, Dong C, Ou H, et al. Palbociclib induces the apoptosis of lung squamous cell carcinoma cells via RB-independent STAT3 phosphorylation. Curr Oncol. 2022;29:5855–68.
pubmed: 36005200 pmcid: 9406926 doi: 10.3390/curroncol29080462
Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 2016;14:979–90.
pubmed: 26804906 pmcid: 4757440 doi: 10.1016/j.celrep.2015.12.094
Cretella D, Ravelli A, Fumarola C, La Monica S, Digiacomo G, Cavazzoni A, et al. The anti-tumor efficacy of CDK4/6 inhibition is enhanced by the combination with PI3K/AKT/mTOR inhibitors through impairment of glucose metabolism in TNBC cells. J Exp Clin Cancer Res. 2018;37:72.
pubmed: 29587820 pmcid: 5872523 doi: 10.1186/s13046-018-0741-3
Costa C, Wang Y, Ly A, Hosono Y, Murchie E, Walmsley CS, et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov. 2020;10:72–85.
pubmed: 31594766 doi: 10.1158/2159-8290.CD-18-0830
Jansen VM, Bhola NE, Bauer JA, Formisano L, Lee K-M, Hutchinson KE, et al. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer. Cancer Res. 2017;77:2488–99.
pubmed: 28249908 pmcid: 5421398 doi: 10.1158/0008-5472.CAN-16-2653
Zhang Z, Wang J, Shanmugasundaram KB, Yeo B, Möller A, Wuethrich A, et al. Tracking drug-induced epithelial-mesenchymal transition in breast cancer by a microfluidic surface-enhanced raman spectroscopy immunoassay. Small. 2020;16:e1905614.
pubmed: 32141228 doi: 10.1002/smll.201905614
Rencuzogulları O, Yerlikaya PO, Gürkan AÇ, Arısan ED, Telci D. Palbociclib, a selective CDK4/6 inhibitor, restricts cell survival and epithelial-mesenchymal transition in Panc-1 and MiaPaCa-2 pancreatic cancer cells. J Cell Biochem. 2020;121:508–23.
pubmed: 31264276 doi: 10.1002/jcb.29249
Belli S, Esposito D, Allotta A, Servetto A, Ciciola P, Pesapane A, et al. Pak1 pathway hyper-activation mediates resistance to endocrine therapy and CDK4/6 inhibitors in ER+ breast cancer. NPJ Breast Cancer. 2023;9:48.
pubmed: 37258566 pmcid: 10232479 doi: 10.1038/s41523-023-00556-9
Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res. 2022;24:17.
pubmed: 35248122 pmcid: 8898415 doi: 10.1186/s13058-022-01510-6
Zacksenhaus E, Jiang Z, Hei YJ, Phillips RA, Gallie BL. Nuclear localization conferred by the pocket domain of the retinoblastoma gene product. Biochim Biophys Acta. 1999;1451:288–96.
pubmed: 10556583 doi: 10.1016/S0167-4889(99)00103-2
Rubio C, Martínez-Fernández M, Segovia C, Lodewijk I, Suarez-Cabrera C, Segrelles C, et al. CDK4/6 inhibitor as a novel therapeutic approach for advanced bladder cancer independently of RB1 status. Clin Cancer Res. 2019;25:390–402.
pubmed: 30242024 doi: 10.1158/1078-0432.CCR-18-0685
Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 2018;34:893–905. e8
pubmed: 30537512 pmcid: 6294301 doi: 10.1016/j.ccell.2018.11.006
Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. The impact of amplification on differential expression analyses by RNA-seq. Sci Rep. 2016;6:25533.
pubmed: 27156886 pmcid: 4860583 doi: 10.1038/srep25533
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.
pubmed: 26000488 pmcid: 4481139 doi: 10.1016/j.cell.2015.05.002
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Posch A. (ed.) Proteomic profiling: methods and protocols. Springer US; 2021.
Bio-Rad Laboratories, Inc. ChemiDoc and ChemiDoc MP imaging systems with image Lab Touch Software: user guide version 2.4. Bio-Rad Laboratories, Inc.; 2019.

Auteurs

Ting Hong (T)

Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Anna C Hogger (AC)

Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Dongbiao Wang (D)

Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Qi Pan (Q)

Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Julie Gansel (J)

Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Thomas Engleitner (T)

Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany.

Rupert Öllinger (R)

Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany.

Jürgen E Gschwend (JE)

Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Roland Rad (R)

Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany.

Roman Nawroth (R)

Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. roman.nawroth@tum.de.

Classifications MeSH