Inverse relation between motion perception and postural responses induced by motion of a touched object.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
17
03
2023
accepted:
17
10
2024
medline:
27
10
2024
pubmed:
27
10
2024
entrez:
27
10
2024
Statut:
epublish
Résumé
Self vs. external attribution of motions based on vestibular cues is suggested to underlie our coherent perception of object motion and self-motion. However, it remains unclear whether such attribution also underlies sensorimotor responses. Here, we examined this issue in the context of touch. We asked participants to lightly touch a moving object with their thumb while standing still on an unstable surface. We measured both the accuracy of judging the object motion direction and the postural response. If the attribution underlies both object-motion perception and posture control, sensitivity of posture to object motion should decrease with motion speed since high speed motion is unlikely to reflect self-motion. Furthermore, when motion perception is erroneous, there should be a corresponding increase in postural responses. Our results are consistent with these predictions and suggest that self-external attribution of somatosensory motion underlies both object motion perception and postural responses.
Identifiants
pubmed: 39462096
doi: 10.1038/s42003-024-07093-6
pii: 10.1038/s42003-024-07093-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1395Informations de copyright
© 2024. The Author(s).
Références
French, R. L. & DeAngelis, G. C. Multisensory neural processing: from cue integration to causal inference. Curr Opin Physiol 16, 8–13 (2020).
pubmed: 32968701
pmcid: 7505234
doi: 10.1016/j.cophys.2020.04.004
MacNeilage, P. R., Zhang, Z., DeAngelis, G. C. & Angelaki, D. E. Vestibular facilitation of optic flow parsing. PLoS One 7, e40264 (2012).
pubmed: 22768345
pmcid: 3388053
doi: 10.1371/journal.pone.0040264
Fajen, B. R. & Matthis, J. S. Visual and non-visual contributions to the perception of object motion during self-motion. PLoS One 8, e55446 (2013).
pubmed: 23408983
pmcid: 3567075
doi: 10.1371/journal.pone.0055446
Sasaki, R., Angelaki, D. E. & DeAngelis, G. C. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization. J Neurosci 37, 11204–11219 (2017).
pubmed: 29030435
pmcid: 5688528
doi: 10.1523/JNEUROSCI.1177-17.2017
Dokka, K., Park, H., Jansen, M., DeAngelis, G. C. & Angelaki, D. E. Causal inference accounts for heading perception in the presence of object motion. Proc Natl Acad Sci USA 116, 9060–9065 (2019).
pubmed: 30996126
pmcid: 6500172
doi: 10.1073/pnas.1820373116
Lee, D. N. & Lishman, J. R. Visual proprioceptive control of stance. Journal of Human Movement Studies 1, 87–95 (1975).
Lestienne, F., Soechting, J. & Berthoz, A. Postural readjustments induced by linear motion of visual scenes. Exp Brain Res 28, 363–384 (1977).
pubmed: 885185
Prokop, T., Schubert, M. & Berger, W. Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res 114, 63–70 (1997).
pubmed: 9125452
doi: 10.1007/PL00005624
Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P. & Sahuc, S. Optic flow is used to control human walking. Nat. Neurosci. 4, 213–216 (2001).
pubmed: 11175884
doi: 10.1038/84054
Takamuku, S. & Gomi, H. Vision-based speedometer regulates human walking. iScience 24, 103390 (2021).
pubmed: 34841229
pmcid: 8605357
doi: 10.1016/j.isci.2021.103390
Saijo, N., Murakami, I., Nishida, S. & Gomi, H. Large-field visual motion directly induces an involuntary rapid manual following response. J. Neurosci 25, 4941–4951 (2005).
pubmed: 15901775
pmcid: 6724847
doi: 10.1523/JNEUROSCI.4143-04.2005
Gomi, H. Implicit online corrections of reaching movements. Current Opinion in Neurobiology 18, 558–564 (2008).
pubmed: 19095435
doi: 10.1016/j.conb.2008.11.002
Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).
pubmed: 1374953
doi: 10.1016/0166-2236(92)90344-8
Bridgemen, B., Kirch, M. & Sperling, A. Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys 29, 336–342 (1981).
pubmed: 7279556
doi: 10.3758/BF03207342
Goodale, M. A., Pelisson, D. & Prablanc, C. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320, 748–750 (1986).
pubmed: 3703000
doi: 10.1038/320748a0
Gomi, H., Abekawa, N. & Nishida, S. Spatiotemporal Tuning of Rapid Interactions between Visual-Motion Analysis and Reaching Movement. J. Neurosci. 26, 5301–5308 (2006).
pubmed: 16707782
pmcid: 6675296
doi: 10.1523/JNEUROSCI.0340-06.2006
Dokka, K., Kenyon, R. V., Keshner, E. A. & Kording, K. P. Self versus Environment Motion in Postural Control. PLoS Comput Biol 6, (2010).
Massion, J. Postural control system. Curr Opin Neurobiol 4, 877–887 (1994).
pubmed: 7888772
doi: 10.1016/0959-4388(94)90137-6
Gurfinkel, V. S., Levik, Yu. S., Popov, K. E., Smetanin, B. N. & Shlikov, V. Yu. Body Scheme in the Control of Postural Activity. in Stance and Motion: Facts and Concepts (eds. Gurfinkel, V. S., Ioffe, M. E., Massion, J. & Roll, J. P.) 185–193 (Springer US, Boston, MA, 1988). https://doi.org/10.1007/978-1-4899-0821-6_17 .
Dalton, B. H., Rasman, B. G., Inglis, J. T. & Blouin, J.-S. The internal representation of head orientation differs for conscious perception and balance control. J Physiol 595, 2731–2749 (2017).
pubmed: 28035656
pmcid: 5390877
doi: 10.1113/JP272998
Tisserand, R. et al. Unperceived motor actions of the balance system interfere with the causal attribution of self-motion. PNAS Nexus 1, pgac174 (2022).
pubmed: 36714829
pmcid: 9802180
doi: 10.1093/pnasnexus/pgac174
Weech, S. & Troje, N. F. Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation. Multisensory Research 30, 65–90 (2017).
doi: 10.1163/22134808-00002545
Lakshminarasimhan, K. J. et al. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration. Neuron (2018) https://doi.org/10.1016/j.neuron.2018.05.040 .
Mergner, T., Schweigart, G., Maurer, C. & Blümle, A. Human postural responses to motion of real and virtual visual environments under different support base conditions. Exp Brain Res 167, 535–556 (2005).
pubmed: 16132969
doi: 10.1007/s00221-005-0065-3
Wei, K., Stevenson, I. H. & Körding, K. P. The uncertainty associated with visual flow fields and their influence on postural sway: Weber’s law suffices to explain the nonlinearity of vection. J Vis 10, 4 (2010).
pubmed: 21131564
doi: 10.1167/10.14.4
Peterka, R. J. Sensorimotor integration in human postural control. J Neurophysiol 88, 1097–1118 (2002).
pubmed: 12205132
doi: 10.1152/jn.2002.88.3.1097
Jeka, J. J. & Lackner, J. R. Fingertip contact influences human postural control. Exp Brain Res 100, 495–502 (1994).
pubmed: 7813685
doi: 10.1007/BF02738408
Rabin, E., DiZio, P., Ventura, J. & Lackner, J. R. Influences of arm proprioception and degrees of freedom on postural control with light touch feedback. J. Neurophysiol. 99, 595–604 (2008).
pubmed: 18032569
doi: 10.1152/jn.00504.2007
Kouzaki, M. & Masani, K. Reduced postural sway during quiet standing by light touch is due to finger tactile feedback but not mechanical support. Exp Brain Res 188, 153–158 (2008).
pubmed: 18506433
doi: 10.1007/s00221-008-1426-5
Jeka, J. J., Schöner, G., Dijkstra, T., Ribeiro, P. & Lackner, J. R. Coupling of fingertip somatosensory information to head and body sway. Exp Brain Res 113, 475–483 (1997).
pubmed: 9108214
doi: 10.1007/PL00005600
Wing, A. M., Johannsen, L. & Endo, S. Light touch for balance: influence of a time-varying external driving signal. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366, 3133–3141 (2011).
pubmed: 21969695
doi: 10.1098/rstb.2011.0169
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).
pubmed: 10196573
doi: 10.1038/2870
Holden, M., Ventura, J. & Lackner, J. R. Stabilization of posture by precision contact of the index finger. J Vestib Res 4, 285–301 (1994).
pubmed: 7921347
Forbes, P. A. et al. Transformation of Vestibular Signals for the Control of Standing in Humans. J Neurosci 36, 11510–11520 (2016).
pubmed: 27911755
pmcid: 6601712
doi: 10.1523/JNEUROSCI.1902-16.2016
Héroux, M. E., Law, T. C. Y., Fitzpatrick, R. C. & Blouin, J.-S. Cross-Modal Calibration of Vestibular Afference for Human Balance. PLoS One 10, e0124532 (2015).
pubmed: 25894558
pmcid: 4403994
doi: 10.1371/journal.pone.0124532
Luu, B. L. et al. Human standing is modified by an unconscious integration of congruent sensory and motor signals. J Physiol 590, 5783–5794 (2012).
pubmed: 22946096
pmcid: 3528991
doi: 10.1113/jphysiol.2012.230334
Jacobs, J. V. & Horak, F. B. Cortical control of postural responses. J Neural Transm (Vienna) 114, 1339–1348 (2007).
pubmed: 17393068
doi: 10.1007/s00702-007-0657-0
Patel, M., Fransson, P. A., Johansson, R. & Magnusson, M. Foam posturography: standing on foam is not equivalent to standing with decreased rapidly adapting mechanoreceptive sensation. Exp Brain Res 208, 519–527 (2011).
pubmed: 21120458
doi: 10.1007/s00221-010-2498-6
Gomi, H., Abekawa, N. & Shimojo, S. The hand sees visual periphery better than the eye: motor-dependent visual motion analyses. J Neurosci 33, 16502–16509 (2013).
pubmed: 24133255
pmcid: 6618533
doi: 10.1523/JNEUROSCI.4741-12.2013
Abekawa, N., Doya, K. & Gomi, H. Body and visual instabilities functionally modulate implicit reaching corrections. iScience 105751 (2022).
Haggard, P. & Whitford, B. Supplementary motor area provides an efferent signal for sensory suppression. Brain Res Cogn Brain Res 19, 52–58 (2004).
pubmed: 14972358
doi: 10.1016/j.cogbrainres.2003.10.018
Bays, P. M., Flanagan, J. R. & Wolpert, D. M. Attenuation of self-generated tactile sensations is predictive, not postdictive. PLoS Biol. 4, e28 (2006).
pubmed: 16402860
pmcid: 1334241
doi: 10.1371/journal.pbio.0040028
Rogers, M. W., Wardman, D. L., Lord, S. R. & Fitzpatrick, R. C. Passive tactile sensory input improves stability during standing. Exp Brain Res 136, 514–522 (2001).
pubmed: 11291732
doi: 10.1007/s002210000615
Patel, M., Fransson, P. A., Lush, D. & Gomez, S. The effect of foam surface properties on postural stability assessment while standing. Gait Posture 28, 649–656 (2008).
pubmed: 18602829
doi: 10.1016/j.gaitpost.2008.04.018
Chiang, J.-H. & Wu, G. The influence of foam surfaces on biomechanical variables contributing to postural control. Gait & Posture 5, 239–245 (1997).
doi: 10.1016/S0966-6362(96)01091-0
Masani, K., Popovic, M. R., Nakazawa, K., Kouzaki, M. & Nozaki, D. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J Neurophysiol 90, 3774–3782 (2003).
pubmed: 12944529
doi: 10.1152/jn.00730.2002
Jeka, J., Kiemel, T., Creath, R., Horak, F. & Peterka, R. Controlling human upright posture: velocity information is more accurate than position or acceleration. J. Neurophysiol. 92, 2368–2379 (2004).
pubmed: 15140910
doi: 10.1152/jn.00983.2003
Takamuku, S. Dataset for ‘Inverse relation between motion perception and postural responses induced by motion of a touched object’. figshare https://doi.org/10.6084/m9.figshare.22354555 (2024).