Inverse relation between motion perception and postural responses induced by motion of a touched object.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
26 Oct 2024
Historique:
received: 17 03 2023
accepted: 17 10 2024
medline: 27 10 2024
pubmed: 27 10 2024
entrez: 27 10 2024
Statut: epublish

Résumé

Self vs. external attribution of motions based on vestibular cues is suggested to underlie our coherent perception of object motion and self-motion. However, it remains unclear whether such attribution also underlies sensorimotor responses. Here, we examined this issue in the context of touch. We asked participants to lightly touch a moving object with their thumb while standing still on an unstable surface. We measured both the accuracy of judging the object motion direction and the postural response. If the attribution underlies both object-motion perception and posture control, sensitivity of posture to object motion should decrease with motion speed since high speed motion is unlikely to reflect self-motion. Furthermore, when motion perception is erroneous, there should be a corresponding increase in postural responses. Our results are consistent with these predictions and suggest that self-external attribution of somatosensory motion underlies both object motion perception and postural responses.

Identifiants

pubmed: 39462096
doi: 10.1038/s42003-024-07093-6
pii: 10.1038/s42003-024-07093-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1395

Informations de copyright

© 2024. The Author(s).

Références

French, R. L. & DeAngelis, G. C. Multisensory neural processing: from cue integration to causal inference. Curr Opin Physiol 16, 8–13 (2020).
pubmed: 32968701 pmcid: 7505234 doi: 10.1016/j.cophys.2020.04.004
MacNeilage, P. R., Zhang, Z., DeAngelis, G. C. & Angelaki, D. E. Vestibular facilitation of optic flow parsing. PLoS One 7, e40264 (2012).
pubmed: 22768345 pmcid: 3388053 doi: 10.1371/journal.pone.0040264
Fajen, B. R. & Matthis, J. S. Visual and non-visual contributions to the perception of object motion during self-motion. PLoS One 8, e55446 (2013).
pubmed: 23408983 pmcid: 3567075 doi: 10.1371/journal.pone.0055446
Sasaki, R., Angelaki, D. E. & DeAngelis, G. C. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization. J Neurosci 37, 11204–11219 (2017).
pubmed: 29030435 pmcid: 5688528 doi: 10.1523/JNEUROSCI.1177-17.2017
Dokka, K., Park, H., Jansen, M., DeAngelis, G. C. & Angelaki, D. E. Causal inference accounts for heading perception in the presence of object motion. Proc Natl Acad Sci USA 116, 9060–9065 (2019).
pubmed: 30996126 pmcid: 6500172 doi: 10.1073/pnas.1820373116
Lee, D. N. & Lishman, J. R. Visual proprioceptive control of stance. Journal of Human Movement Studies 1, 87–95 (1975).
Lestienne, F., Soechting, J. & Berthoz, A. Postural readjustments induced by linear motion of visual scenes. Exp Brain Res 28, 363–384 (1977).
pubmed: 885185
Prokop, T., Schubert, M. & Berger, W. Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res 114, 63–70 (1997).
pubmed: 9125452 doi: 10.1007/PL00005624
Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P. & Sahuc, S. Optic flow is used to control human walking. Nat. Neurosci. 4, 213–216 (2001).
pubmed: 11175884 doi: 10.1038/84054
Takamuku, S. & Gomi, H. Vision-based speedometer regulates human walking. iScience 24, 103390 (2021).
pubmed: 34841229 pmcid: 8605357 doi: 10.1016/j.isci.2021.103390
Saijo, N., Murakami, I., Nishida, S. & Gomi, H. Large-field visual motion directly induces an involuntary rapid manual following response. J. Neurosci 25, 4941–4951 (2005).
pubmed: 15901775 pmcid: 6724847 doi: 10.1523/JNEUROSCI.4143-04.2005
Gomi, H. Implicit online corrections of reaching movements. Current Opinion in Neurobiology 18, 558–564 (2008).
pubmed: 19095435 doi: 10.1016/j.conb.2008.11.002
Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).
pubmed: 1374953 doi: 10.1016/0166-2236(92)90344-8
Bridgemen, B., Kirch, M. & Sperling, A. Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys 29, 336–342 (1981).
pubmed: 7279556 doi: 10.3758/BF03207342
Goodale, M. A., Pelisson, D. & Prablanc, C. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320, 748–750 (1986).
pubmed: 3703000 doi: 10.1038/320748a0
Gomi, H., Abekawa, N. & Nishida, S. Spatiotemporal Tuning of Rapid Interactions between Visual-Motion Analysis and Reaching Movement. J. Neurosci. 26, 5301–5308 (2006).
pubmed: 16707782 pmcid: 6675296 doi: 10.1523/JNEUROSCI.0340-06.2006
Dokka, K., Kenyon, R. V., Keshner, E. A. & Kording, K. P. Self versus Environment Motion in Postural Control. PLoS Comput Biol 6, (2010).
Massion, J. Postural control system. Curr Opin Neurobiol 4, 877–887 (1994).
pubmed: 7888772 doi: 10.1016/0959-4388(94)90137-6
Gurfinkel, V. S., Levik, Yu. S., Popov, K. E., Smetanin, B. N. & Shlikov, V. Yu. Body Scheme in the Control of Postural Activity. in Stance and Motion: Facts and Concepts (eds. Gurfinkel, V. S., Ioffe, M. E., Massion, J. & Roll, J. P.) 185–193 (Springer US, Boston, MA, 1988). https://doi.org/10.1007/978-1-4899-0821-6_17 .
Dalton, B. H., Rasman, B. G., Inglis, J. T. & Blouin, J.-S. The internal representation of head orientation differs for conscious perception and balance control. J Physiol 595, 2731–2749 (2017).
pubmed: 28035656 pmcid: 5390877 doi: 10.1113/JP272998
Tisserand, R. et al. Unperceived motor actions of the balance system interfere with the causal attribution of self-motion. PNAS Nexus 1, pgac174 (2022).
pubmed: 36714829 pmcid: 9802180 doi: 10.1093/pnasnexus/pgac174
Weech, S. & Troje, N. F. Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation. Multisensory Research 30, 65–90 (2017).
doi: 10.1163/22134808-00002545
Lakshminarasimhan, K. J. et al. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration. Neuron (2018) https://doi.org/10.1016/j.neuron.2018.05.040 .
Mergner, T., Schweigart, G., Maurer, C. & Blümle, A. Human postural responses to motion of real and virtual visual environments under different support base conditions. Exp Brain Res 167, 535–556 (2005).
pubmed: 16132969 doi: 10.1007/s00221-005-0065-3
Wei, K., Stevenson, I. H. & Körding, K. P. The uncertainty associated with visual flow fields and their influence on postural sway: Weber’s law suffices to explain the nonlinearity of vection. J Vis 10, 4 (2010).
pubmed: 21131564 doi: 10.1167/10.14.4
Peterka, R. J. Sensorimotor integration in human postural control. J Neurophysiol 88, 1097–1118 (2002).
pubmed: 12205132 doi: 10.1152/jn.2002.88.3.1097
Jeka, J. J. & Lackner, J. R. Fingertip contact influences human postural control. Exp Brain Res 100, 495–502 (1994).
pubmed: 7813685 doi: 10.1007/BF02738408
Rabin, E., DiZio, P., Ventura, J. & Lackner, J. R. Influences of arm proprioception and degrees of freedom on postural control with light touch feedback. J. Neurophysiol. 99, 595–604 (2008).
pubmed: 18032569 doi: 10.1152/jn.00504.2007
Kouzaki, M. & Masani, K. Reduced postural sway during quiet standing by light touch is due to finger tactile feedback but not mechanical support. Exp Brain Res 188, 153–158 (2008).
pubmed: 18506433 doi: 10.1007/s00221-008-1426-5
Jeka, J. J., Schöner, G., Dijkstra, T., Ribeiro, P. & Lackner, J. R. Coupling of fingertip somatosensory information to head and body sway. Exp Brain Res 113, 475–483 (1997).
pubmed: 9108214 doi: 10.1007/PL00005600
Wing, A. M., Johannsen, L. & Endo, S. Light touch for balance: influence of a time-varying external driving signal. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366, 3133–3141 (2011).
pubmed: 21969695 doi: 10.1098/rstb.2011.0169
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).
pubmed: 10196573 doi: 10.1038/2870
Holden, M., Ventura, J. & Lackner, J. R. Stabilization of posture by precision contact of the index finger. J Vestib Res 4, 285–301 (1994).
pubmed: 7921347
Forbes, P. A. et al. Transformation of Vestibular Signals for the Control of Standing in Humans. J Neurosci 36, 11510–11520 (2016).
pubmed: 27911755 pmcid: 6601712 doi: 10.1523/JNEUROSCI.1902-16.2016
Héroux, M. E., Law, T. C. Y., Fitzpatrick, R. C. & Blouin, J.-S. Cross-Modal Calibration of Vestibular Afference for Human Balance. PLoS One 10, e0124532 (2015).
pubmed: 25894558 pmcid: 4403994 doi: 10.1371/journal.pone.0124532
Luu, B. L. et al. Human standing is modified by an unconscious integration of congruent sensory and motor signals. J Physiol 590, 5783–5794 (2012).
pubmed: 22946096 pmcid: 3528991 doi: 10.1113/jphysiol.2012.230334
Jacobs, J. V. & Horak, F. B. Cortical control of postural responses. J Neural Transm (Vienna) 114, 1339–1348 (2007).
pubmed: 17393068 doi: 10.1007/s00702-007-0657-0
Patel, M., Fransson, P. A., Johansson, R. & Magnusson, M. Foam posturography: standing on foam is not equivalent to standing with decreased rapidly adapting mechanoreceptive sensation. Exp Brain Res 208, 519–527 (2011).
pubmed: 21120458 doi: 10.1007/s00221-010-2498-6
Gomi, H., Abekawa, N. & Shimojo, S. The hand sees visual periphery better than the eye: motor-dependent visual motion analyses. J Neurosci 33, 16502–16509 (2013).
pubmed: 24133255 pmcid: 6618533 doi: 10.1523/JNEUROSCI.4741-12.2013
Abekawa, N., Doya, K. & Gomi, H. Body and visual instabilities functionally modulate implicit reaching corrections. iScience 105751 (2022).
Haggard, P. & Whitford, B. Supplementary motor area provides an efferent signal for sensory suppression. Brain Res Cogn Brain Res 19, 52–58 (2004).
pubmed: 14972358 doi: 10.1016/j.cogbrainres.2003.10.018
Bays, P. M., Flanagan, J. R. & Wolpert, D. M. Attenuation of self-generated tactile sensations is predictive, not postdictive. PLoS Biol. 4, e28 (2006).
pubmed: 16402860 pmcid: 1334241 doi: 10.1371/journal.pbio.0040028
Rogers, M. W., Wardman, D. L., Lord, S. R. & Fitzpatrick, R. C. Passive tactile sensory input improves stability during standing. Exp Brain Res 136, 514–522 (2001).
pubmed: 11291732 doi: 10.1007/s002210000615
Patel, M., Fransson, P. A., Lush, D. & Gomez, S. The effect of foam surface properties on postural stability assessment while standing. Gait Posture 28, 649–656 (2008).
pubmed: 18602829 doi: 10.1016/j.gaitpost.2008.04.018
Chiang, J.-H. & Wu, G. The influence of foam surfaces on biomechanical variables contributing to postural control. Gait & Posture 5, 239–245 (1997).
doi: 10.1016/S0966-6362(96)01091-0
Masani, K., Popovic, M. R., Nakazawa, K., Kouzaki, M. & Nozaki, D. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J Neurophysiol 90, 3774–3782 (2003).
pubmed: 12944529 doi: 10.1152/jn.00730.2002
Jeka, J., Kiemel, T., Creath, R., Horak, F. & Peterka, R. Controlling human upright posture: velocity information is more accurate than position or acceleration. J. Neurophysiol. 92, 2368–2379 (2004).
pubmed: 15140910 doi: 10.1152/jn.00983.2003
Takamuku, S. Dataset for ‘Inverse relation between motion perception and postural responses induced by motion of a touched object’. figshare https://doi.org/10.6084/m9.figshare.22354555 (2024).

Auteurs

Shinya Takamuku (S)

NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Wakamiya, Morinosato, Atsugishi, Kanagawa, Japan. shinya.takamuku@ntt.com.

Beata Struckova (B)

Institute of Cognitive Neuroscience, University College London, 17-18 Queen Square, London, UK.

Matthew J Bancroft (MJ)

SENSE Research Unit, Queen Square Institute of Neurology, University College London, 33 Queen Square, London, UK.

Hiroaki Gomi (H)

NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Wakamiya, Morinosato, Atsugishi, Kanagawa, Japan.

Patrick Haggard (P)

Institute of Cognitive Neuroscience, University College London, 17-18 Queen Square, London, UK.

Diego Kaski (D)

SENSE Research Unit, Queen Square Institute of Neurology, University College London, 33 Queen Square, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH