Finite element analysis on the human and guinea pig cochlear vibration patterns under bone conduction stimulations.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 10 2024
Historique:
received: 24 06 2024
accepted: 14 10 2024
medline: 28 10 2024
pubmed: 28 10 2024
entrez: 28 10 2024
Statut: epublish

Résumé

To compare the vibrational patterns of human and guinea pig cochleae accurately, we developed and validated a novel finite element model of the guinea pig, leveraging it to analyze vibrational patterns in the cochlea. This approach is mirrored in our examination of the human cochlear model, providing granular insights into the nuances of human bone conduction hearing. The comparative analysis reveals that the guinea pig cochlea mirrors human cochlear vibrational patterns, thus serving as an efficient proxy for exploring human cochlear function. The human mastoid and the upper region of the guinea pig's skull are recommended as the convenient and comparable sites for bone conduction stimulation. The cochlear vibration pattern encompasses a mix of rigid, rotational, and compressive motion. Significantly, the guinea pig model demonstrates robust agreement with existing experimental data and other studies, these findings are confirming the validity of the model. Our study delineates the distinct roles of the three vibration types across various frequency spectrums. At lower frequencies, rigid motion is the dominant mechanism, supplemented by rotational motion. However, at higher frequencies, the influence of rigid motion wanes, ceding prominence to rotational and compressive motions. This trend is consistently observed in both human and guinea pig models.

Identifiants

pubmed: 39463400
doi: 10.1038/s41598-024-76362-5
pii: 10.1038/s41598-024-76362-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25638

Informations de copyright

© 2024. The Author(s).

Références

Von Békésy, G. & Wever, E. G. Experiments in Hearing Vol. 8 (McGraw-Hill, 1960).
Mudry, A. & Tjellström, A. Historical background of bone conduction hearing devices and bone conduction hearing aids. Adv. Otorhinolaryngol. 71, 1–9 (2011).
pubmed: 21389699
Békésy, G. V. Paradoxical direction of wave travel along the cochlear partition. J. Acoust. Soc. Am. 27(1), 137–145 (1955).
doi: 10.1121/1.1907474
Stenfelt, S. & Goode, R. L. Bone-conducted sound: Physiological and clinical aspects. Otol. Neurotol. 26(6), 1245–1261 (2005).
doi: 10.1097/01.mao.0000187236.10842.d5 pubmed: 16272952
Stenfelt, S. Acoustic and physiologic aspects of bone conduction hearing. Adv. Otorhinolaryngol. 71, 10–21 (2011).
pubmed: 21389700
Stenfelt, S., Skull vibration during bone conduction hearing. In 20th International Congress on Sound and Vibration 2013, ICSV 2013, vol. 2, 1394–1401 (2013).
Zhao, M., Fridberger, A. & Stenfelt, S. Bone conduction hearing in the guinea pig and the effect of artificially induced middle ear lesions. Hear. Res. 379, 21–30 (2019).
doi: 10.1016/j.heares.2019.04.006 pubmed: 31039489
Zhao, M., Fridberger, A. & Stenfelt, S. Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs. Sci. Rep. 11(1), 2855 (2021).
doi: 10.1038/s41598-021-82268-3 pubmed: 33536482 pmcid: 7858597
Heffner, R., Heffner, H. & Masterton, B. Behavioral measurements of absolute and frequency-difference thresholds in guinea pig. J. Acoust. Soc. Am. 49(6), 1888–1895 (1971).
doi: 10.1121/1.1912596 pubmed: 5125738
Stenfelt, S. Model predictions for bone conduction perception in the human. Hear. Res. 340, 135–143 (2016).
doi: 10.1016/j.heares.2015.10.014 pubmed: 26657096
Håkansson, B. et al. Resonance frequencies of the human skull in vivo. J. Acoust. Soc. Am. 95(3), 1474–1481 (1994).
doi: 10.1121/1.408535 pubmed: 8176050
Surendran, S. & Stenfelt, S. The outer ear pathway during hearing by bone conduction. Hear. Res. 421, 108388 (2022).
doi: 10.1016/j.heares.2021.108388 pubmed: 34776273
Stenfelt, S. & Reinfeldt, S. A model of the occlusion effect with bone-conducted stimulation. Int. J. Audiol. 46(10), 595–608 (2007).
doi: 10.1080/14992020701545880 pubmed: 17922349
Stenfelt, S., Hato, N. & Goode, R. L. Factors contributing to bone conduction: The middle ear. J. Acoust. Soc. Am. 111(2), 947–959 (2002).
doi: 10.1121/1.1432977 pubmed: 11863197
Tonndorf, J. Bone conduction. Studies in experimental animals. Acta Otolaryngol. 213, 1 (1966).
Sohmer, H. et al. Bone conduction experiments in humans—A fluid pathway from bone to ear. Hear. Res. 146(1), 81–88 (2000).
doi: 10.1016/S0378-5955(00)00099-X pubmed: 10913886
Goksu, N. et al. Anatomy of the guinea pig temporal bone. Ann. Otol. Rhinol. Laryngol. 101(8), 699–704 (1992).
doi: 10.1177/000348949210100814 pubmed: 1497279
Wysocki, J. Topographical anatomy of the guinea pig temporal bone. Hear. Res. 199(1), 103–110 (2005).
doi: 10.1016/j.heares.2004.08.008 pubmed: 15574304
Stenfelt, S. Inner ear contribution to bone conduction hearing in the human. Hear. Res. 329, 41–51 (2015).
doi: 10.1016/j.heares.2014.12.003 pubmed: 25528492
Maoiléidigh, D. Ó. & Hudspeth, A. J. Vibrational modes and damping in the cochlear partition. AIP Conf. Proc. 1703(1), 050003 (2015).
doi: 10.1063/1.4939348
Stenfelt, S. & Prodanovic, S. Simulation of soft tissue stimulation–indication of a skull bone vibration mechanism in bone conduction hearing. Hear. Res. 418, 108471 (2022).
doi: 10.1016/j.heares.2022.108471 pubmed: 35255284
Söderström, T. & Stoica, P. System Identification (Prentice Hall, 1989).
Wysocki, J. & Sharifi, M. Measurements of selected parameters of the guinea pig temporal bone. Folia Morphol. (Warsz) 64(3), 145–150 (2005).
pubmed: 16228948
Robles, L. & Ruggero, M. A. Mechanics of the mammalian cochlea. Physiol. Rev. 81(3), 1305–1352 (2001).
doi: 10.1152/physrev.2001.81.3.1305 pubmed: 11427697

Auteurs

Mingduo Zhao (M)

Department of Biomedical and Clinical Sciences, Linköping University, Stair D Level 11, 58185, Linköping, Sweden. zhaomingduo@gmail.com.

Stefan Stenfelt (S)

Department of Biomedical and Clinical Sciences, Linköping University, Stair D Level 11, 58185, Linköping, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH