Dietary acid load adopts the effect of ApoB ins/del genetic variant (rs11279109) on obesity trait, cardiovascular markers, lipid profile, and serum leptin level among patients with diabetes: a cross-sectional study.
ApoB
Dietary acid load
Genetic variant
Inflammation
Lipid profile
Obesity
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 Oct 2024
27 Oct 2024
Historique:
received:
05
05
2023
accepted:
04
10
2024
medline:
28
10
2024
pubmed:
28
10
2024
entrez:
28
10
2024
Statut:
epublish
Résumé
ApoB insertion/deletion (ins/del) genetic variant (rs11279109) is thought to be related to cardio-metabolic markers and obesity. This association has the potential to be modified by dietary patterns. Since the majority of studies concerned the role of dietary acid load (DAL) or ApoB in type 2 diabetes mellitus (T2DM) and its complications independently, and due to the insufficient data regarding the possible interactions between ApoB genetic variants and DAL on anthropometric and metabolic markers, we aimed to study the interaction between this genetic variant and dietary acid load (DAL) on cardio-metabolic markers, along with leptin among Iranian individuals with T2DM. 700 T2DM patients were randomly recruited. A validated semi-quantitative food frequency questionnaire was used for DAL calculation including potential renal acid load (PRAL) and net-endogenous acid production (NEAP). The polymerase chain reaction was used for genotyping the ApoB ins/del (rs11279109). The general linear model was applied to find the interactions in the crude and adjusted models. Patients with del/del genotype (rs11279109) with high PRAL intake have lower low-density lipoprotein cholesterol (LDL-C) (P
Identifiants
pubmed: 39465244
doi: 10.1038/s41598-024-75352-x
pii: 10.1038/s41598-024-75352-x
doi:
Substances chimiques
Leptin
0
Biomarkers
0
Apolipoprotein B-100
0
APOB protein, human
0
Lipids
0
Acids
0
Apolipoproteins B
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25650Informations de copyright
© 2024. The Author(s).
Références
Hameed, I. et al. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes 6(4), 598 (2015).
pubmed: 25987957
pmcid: 4434080
doi: 10.4239/wjd.v6.i4.598
Wright, A. K. et al. Life expectancy and cause-specific mortality in type 2 diabetes: A population-based cohort study quantifying relationships in ethnic subgroups. Diabetes Care 40(3), 338–345 (2017).
pubmed: 27998911
doi: 10.2337/dc16-1616
Naeini, Z. et al. Effects of DHA-enriched fish oil on gene expression levels of p53 and NF-κB and PPAR-γ activity in PBMCs of patients with T2DM: A randomized, double-blind, clinical trial. Nutr. Metab. Cardiovasc. Dis. 30(3), 441–447 (2020).
pubmed: 31831363
doi: 10.1016/j.numecd.2019.10.012
Leon, B. M. & Maddox, T. M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6(13), 1246 (2015).
pubmed: 26468341
pmcid: 4600176
doi: 10.4239/wjd.v6.i13.1246
Narindrarangkura, P., Bosl, W., Rangsin, R. & Hatthachote, P. Prevalence of dyslipidemia associated with complications in diabetic patients: A nationwide study in Thailand. Lipids Health Dis. 18(1), 1–8 (2019).
doi: 10.1186/s12944-019-1034-3
Howard, B. V. Insulin resistance and lipid metabolism. Am. J. Cardiol. 84(1), 28–32 (1999).
doi: 10.1016/S0002-9149(99)00355-0
Rafiee, M. et al. The interaction between apolipoprotein b insertion/deletion polymorphism and macronutrient intake on lipid profile and serum leptin and ghrelin levels in type 2 diabetes mellitus patients. Eur. J. Nutr. 58(3), 1055–1065 (2019).
pubmed: 29374794
doi: 10.1007/s00394-018-1621-5
Ainsworth, B. E. et al. Compendium of physical activities: classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 25(1), 71–80 (1993).
pubmed: 8292105
doi: 10.1249/00005768-199301000-00011
Devaraj, S., Dasu, M. R. & Jialal, I. Diabetes is a proinflammatory state: A translational perspective. Expert. Rev. Endocrinol. Metab. 5(1), 19–28 (2010).
pubmed: 20204165
pmcid: 2829992
doi: 10.1586/eem.09.44
Olokoba, A. B., Obateru, O. A. & Olokoba, L. B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 27(4), 269 (2012).
pubmed: 23071876
pmcid: 3464757
doi: 10.5001/omj.2012.68
Chasman, D. I. et al. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and Apolipoprotein B among 6382 white women in genome-wide analysis with replication. Circulation: Cardiovasc. Genet. 1(1), 21–30 (2008).
Johansen, C. T., Kathiresan, S. & Hegele, R. A. Genetic determinants of plasma triglycerides. J. Lipid Res. 52(2), 189–206 (2011).
pubmed: 21041806
pmcid: 3023540
doi: 10.1194/jlr.R009720
Al-Bustan, S. A., Alnaqeeb, M. A., Annice, B. G., Ebrahim, G. A. & Refai, T. M. Genetic association of APOB polymorphisms with variation in serum lipid profile among the Kuwait population. Lipids Health Dis 13, 157. https://doi.org/10.1186/1476-511x-13-157 (2014).
doi: 10.1186/1476-511x-13-157
pubmed: 25292352
pmcid: 4201729
Onat, A. et al. Serum apolipoprotein B predicts dyslipidemia, metabolic syndrome and in women, hypertension and diabetes, independent of markers of central obesity and inflammation. Int. J. Obes. (Lond.) 31(7), 1119–1125. https://doi.org/10.1038/sj.ijo.0803552 (2007).
doi: 10.1038/sj.ijo.0803552
pubmed: 17299378
Faraj, M. et al. Apolipoprotein B: A predictor of inflammatory status in postmenopausal overweight and obese women. Diabetologia 49(7), 1637–1646. https://doi.org/10.1007/s00125-006-0259-7 (2006).
doi: 10.1007/s00125-006-0259-7
pubmed: 16752182
Huang, L. S., de Graaf, J. & Breslow, J. L. ApoB gene MspI RFLP in exon 26 changes amino acid 3611 from Arg to Gln. J. Lipid. Res. 29(1), 63–67 (1988).
pubmed: 2895796
doi: 10.1016/S0022-2275(20)38556-4
Niu, C. et al. Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: A meta-analysis. Lip. Health Dis. 16(1), 1–20 (2017).
Siri, P. et al. Post-transcriptional Stimulation of the Assembly and Secretion of Triglyceride-rich Apolipoprotein B Lipoproteins in a Mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance*. J. Biol. Chem. 276(49), 46064–46072. https://doi.org/10.1074/jbc.M108909200 (2001).
doi: 10.1074/jbc.M108909200
pubmed: 11598138
Visvikis, S., Chan, L., Siest, G., Drouin, P. & Boerwinkle, E. An insertion deletion polymorphism in the signal peptide of the human apolipoprotein B gene. Hum. Genet. 84(4), 373–375. https://doi.org/10.1007/BF00196239 (1990).
doi: 10.1007/BF00196239
pubmed: 2307462
Jenkins, D. J. et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 172(21), 1653–1660. https://doi.org/10.1001/2013.jamainternmed.70 (2012).
doi: 10.1001/2013.jamainternmed.70
pubmed: 23089999
Pajukanta, P. E. et al. The effects of the apolipoprotein B signal peptide (ins/del) and XbaI polymorphisms on plasma lipid responses to dietary change. Atherosclerosis 122(1), 1–10 (1996).
pubmed: 8724106
doi: 10.1016/0021-9150(95)05725-0
Rafiee, M. et al. Association between Insertion/Deletion Polymorphism of ApoB gene with dyslipidemia and obesity risk in patients with type 2 diabetes deletion polymorphism of ApoB gene with dyslipidemia and obesity risk in patients with type 2 diabetes. J. Obes. Overweig. 2(2), 204. https://doi.org/10.15744/2455-7633.2.301 (2016).
doi: 10.15744/2455-7633.2.301
Sturley, S. L. et al. Human apolipoprotein B signal sequence variants confer a secretion-defective phenotype when expressed in yeast. J. Biol. Chem. 269(34), 21670–21675 (1994).
pubmed: 8063810
doi: 10.1016/S0021-9258(17)31858-6
Heng, C., Saha, N. & Low, P. Evolution of the apolipoprotein B gene and coronary artery disease: A study in low and high risk Asians. Ann. Hum. Genet. 63(1), 45–62 (1999).
pubmed: 10738520
doi: 10.1046/j.1469-1809.1999.6310045.x
Horvath, A., Chorbov, V., Zaharova, B. & Ganev, V. Five polymorphisms of the apolipoprotein B gene in healthy Bulgarians. Hum. Biol. 75, 69–80 (2003).
pubmed: 12713147
doi: 10.1353/hub.2003.0022
Ruixing, Y. et al. Effect of the 3’APOB-VNTR polymorphism on the lipid profiles in the Guangxi Hei Yi Zhuang and Han populations. BMC Med. Genet. 8(1), 1–13 (2007).
doi: 10.1186/1471-2350-8-45
Kallel, A., Jemaa, R., Feki, M., El Asmi, M., Souissi, M., Sanhaji, H., Haj-Taieb, S., Omar, S., Kaabachi, N. XbaI polymorphism of apolipoprotein B gene in a Tunisian population: alleles frequencies and relationship with plasma lipid parameters. In Annales de biologie clinique 265–70 (2007).
Tsunoda, K., Harihara, S., Tanabe, Y. & Dashnyam, B. Polymorphism of the apolipoprotein B gene and association with plasma lipid and lipoprotein levels in the Mongolian Buryat. Biochem. Genet. 50(3), 249–268 (2012).
pubmed: 21952877
doi: 10.1007/s10528-011-9468-y
Vimaleswaran, K. S. et al. The APOB insertion/deletion polymorphism (rs17240441) influences postprandial lipaemia in healthy adults. Nutr. Metab. (Lond.) 12, 7. https://doi.org/10.1186/s12986-015-0002-9 (2015).
doi: 10.1186/s12986-015-0002-9
pubmed: 25793007
Zhang, J.-Z. et al. Association between apolipoprotein B gene polymorphisms and the risk of coronary heart disease (CHD): An update meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 16(4), 827–837 (2015).
pubmed: 26537298
doi: 10.1177/1470320315615047
Cavalli, S. A. et al. Apolipoprotein B gene polymorphisms: Prevalence and impact on serum lipid concentrations in hypercholesterolemic individuals from Brazil. Clin. Chim. Acta 302(1–2), 189–203 (2000).
pubmed: 11074075
doi: 10.1016/S0009-8981(00)00367-3
Glisic, S., Prljic, J., Radovanovic, N. & Alavantic, D. Study of apoB gene signal peptide insertion/deletion polymorphism in a healthy Serbian population: No association with serum lipid levels. Clin. Chim. Acta 263(1), 57–66 (1997).
pubmed: 9247728
doi: 10.1016/S0009-8981(97)06556-X
Nelson, K. M., Reiber, G. & Boyko, E. J. Diet and exercise among adults with type 2 diabetes: Findings from the third national health and nutrition examination survey (NHANES III). Diabet. Care 25(10), 1722–1728 (2002).
doi: 10.2337/diacare.25.10.1722
Glasgow, R. E., Hampson, S. E., Strycker, L. A. & Ruggiero, L. Personal-model beliefs and social-environmental barriers related to diabetes self-management. Diabet. Care 20(4), 556–561 (1997).
doi: 10.2337/diacare.20.4.556
Harris, M. I. Diabetes in America: Epidemiology and scope of the problem. Diabet. Care 21(Supplement 3), C11–C14 (1998).
doi: 10.2337/diacare.21.3.C11
Toeller, M. et al. Nutritional intake of 2868 IDDM patients from 30 centres in Europe. Diabetologia 39(8), 929–939 (1996).
pubmed: 8858215
doi: 10.1007/BF00403912
Eeley, E. et al. UKPDS 18: Estimated dietary intake in type 2 diabetic patients randomly allocated to diet, sulphonylurea or insulin therapy. Diabet. Med. 13(7), 656–662 (1996).
pubmed: 8840101
doi: 10.1002/(SICI)1096-9136(199607)13:7<656::AID-DIA131>3.0.CO;2-5
Campbell, L. V., Barth, R. & Cosper, J. Unsatisfactory nutritional parameters in non-insulin-dependent diabetes mellitus. Med. J. Aust. 151(3), 146–150 (1989).
pubmed: 2755373
doi: 10.5694/j.1326-5377.1989.tb139599.x
Virtanen, S. M. et al. Comparison of diets of diabetic and non-diabetic elderly men in Finland, The Netherlands and Italy. Eur. J. Clin. Nutr. 54(3), 181–186 (2000).
pubmed: 10713738
doi: 10.1038/sj.ejcn.1600916
Tan, S.-Y., Batterham, M. & Tapsell, L. Increased intake of dietary polyunsaturated fat does not promote whole body or preferential abdominal fat mass loss in overweight adults. Obes. Facts 4(5), 352–357 (2011).
pubmed: 22166754
pmcid: 6444462
doi: 10.1159/000333433
Hietavala, E. et al. Effect of diet composition on acid–base balance in adolescents, young adults and elderly at rest and during exercise. Eur. J. Clin. Nutr. 69(3), 399–404 (2015).
pubmed: 25491498
doi: 10.1038/ejcn.2014.245
Siener, R. Dietary treatment of metabolic acidosis in chronic kidney disease. Nutrients 10(4), 512 (2018).
pubmed: 29677110
pmcid: 5946297
doi: 10.3390/nu10040512
Wu, T. et al. Associations between dietary acid load and biomarkers of inflammation and hyperglycemia in breast cancer survivors. Nutrients 11(8), 1913 (2019).
pubmed: 31443226
pmcid: 6723571
doi: 10.3390/nu11081913
Ostrowska, J., Janiszewska, J. & Szostak-Węgierek, D. Dietary acid load and cardiometabolic risk factors—A narrative review. Nutrients 12(11), 3419 (2020).
pubmed: 33171835
pmcid: 7695144
doi: 10.3390/nu12113419
Han, E. et al. Association between dietary acid load and the risk of cardiovascular disease: Nationwide surveys (KNHANES 2008–2011). Cardiovasc. Diabetol. 15(1), 1–14 (2016).
doi: 10.1186/s12933-016-0436-z
Fjell, A. M. et al. One-year brain atrophy evident in healthy aging. J. Neurosci. 29(48), 15223–15231 (2009).
pubmed: 19955375
pmcid: 2827793
doi: 10.1523/JNEUROSCI.3252-09.2009
Abbasalizad Farhangi, M., Nikniaz, L. & Nikniaz, Z. Higher dietary acid load potentially increases serum triglyceride and obesity prevalence in adults: An updated systematic review and meta-analysis. PLoS ONE 14(5), e0216547. https://doi.org/10.1371/journal.pone.0216547 (2019).
doi: 10.1371/journal.pone.0216547
pubmed: 31071141
pmcid: 6508739
Taskinen, M.-R. & Borén, J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239(2), 483–495 (2015).
pubmed: 25706066
doi: 10.1016/j.atherosclerosis.2015.01.039
Rafiee, M. et al. Dietary ω-3 polyunsaturated fatty acid intake modulates impact of Insertion/Deletion polymorphism of ApoB gene on obesity risk in type 2 diabetic patients. Nutrition 32(10), 1110–1115 (2016).
pubmed: 27210509
doi: 10.1016/j.nut.2016.03.012
Identification EPot, Overweight To, Adults Oi, Heart N, Lung, Institute B, Diabetes NIo, Digestive, Diseases K. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report: National Institutes of Health, National Heart, Lung, and Blood Institute, 1998.
Moghaddam, M. H. B. et al. The Iranian version of international physical activity questionnaire (IPAQ) in Iran: Content and construct validity, factor structure, internal consistency and stability. World Appl. Sci. J. 18, 1073–1080. https://doi.org/10.5829/idosi.wasj.2012.18.08.754 (2012).
doi: 10.5829/idosi.wasj.2012.18.08.754
Mirmiran, P., Esfahani, F. & Azizi, F. Relative validity and reliability of the food frequency questionnaire used to assess nutrient intakes: Tehran Lipid and Glucose Study. Iran J. Diabetes Lipid. 9(2), 185–197 (2009).
Ghaffarpour, M., Houshiar-Rad, A. & Kianfar, H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy 7(213), 42–58 (1999).
Frassetto, L. A., Todd, K. M., Morris, R. C. Jr. & Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 68(3), 576–583 (1998).
pubmed: 9734733
doi: 10.1093/ajcn/68.3.576
Remer, T., Dimitriou, T. & Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 77(5), 1255–1260 (2003).
pubmed: 12716680
doi: 10.1093/ajcn/77.5.1255
Miller, S., Dykes, D. & Polesky, H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16(3), 1215 (1988).
pubmed: 3344216
pmcid: 334765
doi: 10.1093/nar/16.3.1215
Süsleyici, B., Öztürk, M., Yilmazer, S., Cağatay, P. & Hatemi, H. Apolipoprotein B gene variants are involved in the determination of blood glucose and lipid levels in patients with non-insulin dependent diabetes mellitus. Cell Biochem. Funct. 24, 261–267. https://doi.org/10.1002/cbf.1218 (2006).
doi: 10.1002/cbf.1218
Marshall, H. W. et al. Apolipoprotein polymorphisms fail to define risk of coronary artery disease. Results of a prospective, angiographically controlled study. Circulation 89(2), 567–577. https://doi.org/10.1161/01.cir.89.2.567 (1994).
doi: 10.1161/01.cir.89.2.567
pubmed: 8313545
Gardemann, A. et al. Association of the insertion/deletion gene polymorphism of the apolipoprotein B signal peptide with myocardial infarction. Atherosclerosis 141(1), 167–175. https://doi.org/10.1016/s0021-9150(98)00161-0 (1998).
doi: 10.1016/s0021-9150(98)00161-0
pubmed: 9863550
Lamia, R. et al. Association of four apolipoprotein B polymorphisms with lipid profile and stenosis in Tunisian coronary patients. J. Genet. 91, 75–79. https://doi.org/10.1007/s12041-012-0127-9 (2012).
doi: 10.1007/s12041-012-0127-9
pubmed: 22546827
Vimaleswaran, K. S. et al. The APOB insertion/deletion polymorphism (rs17240441) influences postprandial Lipaemia in healthy adults. Nutr. Metab. 12(1), 7. https://doi.org/10.1186/s12986-015-0002-9 (2015).
doi: 10.1186/s12986-015-0002-9
Siri, P. et al. Post-transcriptional stimulation of the assembly and secretion of triglyceride-rich apolipoprotein B lipoproteins in a mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance. J. Boil. Chem. 276(49), 46064–46072. https://doi.org/10.1074/jbc.M108909200 (2001).
doi: 10.1074/jbc.M108909200
Twisk, J. et al. The role of the LDL receptor in apolipoprotein B secretion. J. Clin. Invest. 105(4), 521–532. https://doi.org/10.1172/jci8623 (2000).
doi: 10.1172/jci8623
pubmed: 10683382
pmcid: 289165
Li, A. C. et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 106(4), 523–531. https://doi.org/10.1172/jci10370 (2000).
doi: 10.1172/jci10370
pubmed: 10953027
pmcid: 380255
Mattevi, V. S., Coimbra, C. E. Jr., Santos, R. V., Salzano, F. M. & Hutz, M. H. Association of the low-density lipoprotein receptor gene with obesity in Native American populations. Hum. Genet. 106(5), 546–552. https://doi.org/10.1007/s004390000299 (2000).
doi: 10.1007/s004390000299
pubmed: 10914685
Maffei, M. et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1(11), 1155–1161. https://doi.org/10.1038/nm1195-1155 (1995).
doi: 10.1038/nm1195-1155
pubmed: 7584987
Halle, M. et al. Concurrent reductions of serum leptin and lipids during weight loss in obese men with type II diabetes. Am. J. Physiol. Endocrinol. Metab. 277(2), E277–E282. https://doi.org/10.1152/ajpendo.1999.277.2.E277 (1999).
doi: 10.1152/ajpendo.1999.277.2.E277
Du, H. et al. Dietary energy density in relation to subsequent changes of weight and waist circumference in European men and women. PLoS ONE 4(4), e5339. https://doi.org/10.1371/journal.pone.0005339 (2009).
doi: 10.1371/journal.pone.0005339
pubmed: 19396357
pmcid: 2669499
Mendoza, J. A., Drewnowski, A. & Christakis, D. A. Dietary energy density is associated with obesity and the metabolic syndrome in U.S. adults. Diabetes Care 30(4), 974–979. https://doi.org/10.2337/dc06-2188 (2007).
doi: 10.2337/dc06-2188
pubmed: 17229942
Murakami, K., Sasaki, S., Takahashi, Y. & Uenishi, K. Dietary energy density is associated with body mass index and waist circumference, but not with other metabolic risk factors, in free-living young Japanese women. Nutrition 23(11), 798–806. https://doi.org/10.1016/j.nut.2007.08.014 (2007).
doi: 10.1016/j.nut.2007.08.014
pubmed: 17936194
Jayedi, A. & Shab-Bidar, S. Dietary acid load and risk of type 2 diabetes: A systematic review and dose–response meta-analysis of prospective observational studies. Clin. Nutr. ESPEN 23, 10–18 (2018).
pubmed: 29460782
doi: 10.1016/j.clnesp.2017.12.005
Remer, T. Influence of nutrition on acid-base balance—Metabolic aspects. Eur. J. Nutr. 40(5), 214–220. https://doi.org/10.1007/s394-001-8348-1 (2001).
doi: 10.1007/s394-001-8348-1
pubmed: 11842946
Arisawa, K. et al. Association of dietary acid load with the prevalence of metabolic syndrome among participants in baseline survey of the Japan multi-institutional collaborative cohort study. Nutrients 12(6), 1605 (2020).
pubmed: 32486113
pmcid: 7352218
doi: 10.3390/nu12061605
Fatahi, S., Qorbani, M. & Azadbakht, L. Association between dietary acid load with weight status, dietray quality index (DQI), mean adequacy ratio and energy density among women. J. Gorgan Univ. Med. Sci. 21(1), 76–86 (2019).
Mozaffari, H., Namazi, N., Larijani, B., Bellissimo, N. & Azadbakht, L. Association of dietary acid load with cardiovascular risk factors and the prevalence of metabolic syndrome in Iranian women: A cross-sectional study. Nutrition 67–68, 110570. https://doi.org/10.1016/j.nut.2019.110570 (2019).
doi: 10.1016/j.nut.2019.110570
pubmed: 31568970
Murakami, K., Sasaki, S., Takahashi, Y. & Uenishi, K. Association between dietary acid–base load and cardiometabolic risk factors in young Japanese women. Br. J. Nutr. 100(3), 642–651 (2008).
pubmed: 18279559
doi: 10.1017/S0007114508901288
Mokhtary, N. et al. Association between dietary inflammatory indices (DII, EDII) and obesity with consideration of Insertion/Deletion Apo B polymorphism in type 2 diabetic patients. Obes. Med. 19, 100241. https://doi.org/10.1016/j.obmed.2020.100241 (2020).
doi: 10.1016/j.obmed.2020.100241
Mohamadinarab, M., Yekaninejad, M. S., Siassi, F. & Koohdani, F. Association between dietary inflammatory index and lipid profiles with consideration of Apo B Ins/ Del SNP in type 2 diabetic patients. Meta Gene 26, 100811. https://doi.org/10.1016/j.mgene.2020.100811 (2020).
doi: 10.1016/j.mgene.2020.100811
Becerra-Tomás, N., Papandreou, C. & Salas-Salvadó, J. Legume consumption and cardiometabolic health. Adv. Nutr. 10(Supplement_4), S437–S450. https://doi.org/10.1093/advances/nmz003 (2019).
doi: 10.1093/advances/nmz003
pubmed: 31728491
pmcid: 6855964
Hosseinpour-Niazi, S., Mirmiran, P., Hedayati, M. & Azizi, F. Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: A cross-over randomized clinical trial. Eur J. Clin. Nutr. 69(5), 592–597. https://doi.org/10.1038/ejcn.2014.228 (2015).
doi: 10.1038/ejcn.2014.228
pubmed: 25351652
Ha, V. et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. Can. Med. Assoc. J. 186(8), E252. https://doi.org/10.1503/cmaj.131727 (2014).
doi: 10.1503/cmaj.131727
Hermsdorff, H. H. M., Zulet, M. Á., Abete, I. & Martínez, J. A. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur. J. Nutr. 50(1), 61–69. https://doi.org/10.1007/s00394-010-0115-x (2011).
doi: 10.1007/s00394-010-0115-x
pubmed: 20499072
Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H. & Winham, D. M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 21(2), 94–103. https://doi.org/10.1016/j.numecd.2009.08.012 (2011).
doi: 10.1016/j.numecd.2009.08.012
pubmed: 19939654
Zhang, Z. et al. A high legume low glycemic index diet improves serum lipid profiles in men. Lipids 45(9), 765–775. https://doi.org/10.1007/s11745-010-3463-7 (2010).
doi: 10.1007/s11745-010-3463-7
pubmed: 20734238
pmcid: 3461593
Crujeiras, A. B., Parra, D., Abete, I. & Martínez, J. A. A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic. Res. 41(4), 498–506. https://doi.org/10.1080/10715760601131935 (2007).
doi: 10.1080/10715760601131935
pubmed: 17454132
Anderson, J. W. & Major, A. W. Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 88(S3), 263–271. https://doi.org/10.1079/BJN2002716 (2002).
doi: 10.1079/BJN2002716
Tovar, J., Nilsson, A., Johansson, M. & Björck, I. Combining functional features of whole-grain barley and legumes for dietary reduction of cardiometabolic risk: A randomised cross-over intervention in mature women. Br. J. Nutr. 111(4), 706–714. https://doi.org/10.1017/S000711451300305X (2014).
doi: 10.1017/S000711451300305X
pubmed: 24063257
Mohammadifard, N., Sarrafzadegan, N., Paknahad, Z. & Nouri, F. Inverse association of legume consumption and dyslipidemia: Isfahan Healthy Heart Program. J. Clin. Lipidol. 8(6), 584–593. https://doi.org/10.1016/j.jacl.2014.08.006 (2014).
doi: 10.1016/j.jacl.2014.08.006
pubmed: 25499941
Ruiz-Esparza-Cisneros, J., Vasconcelos-Ulloa, J. J., González-Mendoza, D., Beltrán-González, G. & Díaz-Molina, R. Effect of dietary intervention with a legume-based food product on malondialdehyde levels, HOMA index, and lipid profile. Endocrinología, Diabetes y Nutrición (English ed) 67(4), 235–244. https://doi.org/10.1016/j.endien.2019.08.007 (2020).
doi: 10.1016/j.endien.2019.08.007
Esmaillzadeh, A. & Azadbakht, L. Legume consumption is inversely associated with serum concentrations of adhesion molecules and inflammatory biomarkers among Iranian women. J. Nutr. 142(2), 334–339. https://doi.org/10.3945/jn.111.146167 (2011).
doi: 10.3945/jn.111.146167
pubmed: 22190025
Hartman, T. J. et al. Consumption of a legume-enriched, low-glycemic index diet is associated with biomarkers of insulin resistance and inflammation among men at risk for colorectal cancer. J. Nutr. 140(1), 60–67. https://doi.org/10.3945/jn.109.114249 (2009).
doi: 10.3945/jn.109.114249
pubmed: 19889807
Saraf-Bank, S., Esmaillzadeh, A., Faghihimani, E. & Azadbakht, L. Effect of non-soy legume consumption on inflammation and serum adiponectin levels among first-degree relatives of patients with diabetes: A randomized, crossover study. Nutrition 31(3), 459–465. https://doi.org/10.1016/j.nut.2014.09.015 (2015).
doi: 10.1016/j.nut.2014.09.015
pubmed: 25701335
Nilsson, A., Johansson, E., Ekström, L. & Björck, I. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS ONE 8(4), e59985. https://doi.org/10.1371/journal.pone.0059985 (2013).
doi: 10.1371/journal.pone.0059985
pubmed: 23577078
pmcid: 3618511
Trinidad, T. P., Mallillin, A. C., Loyola, A. S., Sagum, R. S. & Encabo, R. R. The potential health benefits of legumes as a good source of dietary fibre. Br. J. Nutr. 103(4), 569–574. https://doi.org/10.1017/S0007114509992157 (2010).
doi: 10.1017/S0007114509992157
pubmed: 19825218
Mallillin, A. C., Trinidad, T. P., Raterta, R., Dagbay, K. & Loyola, A. S. Dietary fibre and fermentability characteristics of root crops and legumes. Br. J. Nutr. 100(3), 485–488. https://doi.org/10.1017/S000711450891151X (2008).
doi: 10.1017/S000711450891151X
pubmed: 18331664
Rochfort, S. & Panozzo, J. Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 55(20), 7981–7994. https://doi.org/10.1021/jf071704w (2007).
doi: 10.1021/jf071704w
pubmed: 17784726
King, D. E. et al. Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. Arch. Intern. Med. 167(5), 502–506. https://doi.org/10.1001/archinte.167.5.502 (2007).
doi: 10.1001/archinte.167.5.502
pubmed: 17353499
Ma, Y. et al. Association between dietary fiber and serum C-reactive protein. Am. J. Clin. Nutr. 83(4), 760–766. https://doi.org/10.1093/ajcn/83.4.760 (2006).
doi: 10.1093/ajcn/83.4.760
pubmed: 16600925
Liu, M. & Dudley, S. C. Magnesium, oxidative stress inflammation, and cardiovascular disease. Antioxidants 9(10), 907 (2020).
pubmed: 32977544
pmcid: 7598282
doi: 10.3390/antiox9100907
Maier, J. A., Castiglioni, S., Locatelli, L., Zocchi, M. & Mazur, A. Magnesium and inflammation: Advances and perspectives. Semin. Cell Dev. Biol. 115, 37–44. https://doi.org/10.1016/j.semcdb.2020.11.002 (2021).
doi: 10.1016/j.semcdb.2020.11.002
pubmed: 33221129
Rayssiguier, Y., Libako, P., Nowacki, W. & Rock, E. Magnesium deficiency and metabolic syndrome: Stress and inflammation may reflect calcium activation. Magn. Res. 23(2), 73–80. https://doi.org/10.1684/mrh.2010.0208 (2010).
doi: 10.1684/mrh.2010.0208
Sontia, B., Montezano, A. C., Paravicini, T., Tabet, F. & Touyz, R. M. Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: Effects of magnesium. Hypertension 51(4), 915–921. https://doi.org/10.1161/hypertensionaha.107.100339 (2008).
doi: 10.1161/hypertensionaha.107.100339
pubmed: 18268139
Mak, I. T., Kramer, J. H. & Weglicki, W. B. Suppression of neutrophil and endothelial activation by substance P receptor blockade in the Mg-deficient rat. Magn. Res. 16(2), 91–97 (2003).
Guerrero-Romero, F. & Rodríguez-Morán, M. Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. Diabetes/Metab. Res Rev. 22(6), 471–476. https://doi.org/10.1002/dmrr.644 (2006).
doi: 10.1002/dmrr.644
pubmed: 16598698
Ahokas, R. A., Sun, Y., Bhattacharya, S. K., Gerling, I. C. & Weber, K. T. Aldosteronism and a proinflammatory vascular phenotype: Role of Mg2+, Ca2+, and H2O2 in peripheral blood mononuclear cells. Circulation 111(1), 51–57. https://doi.org/10.1161/01.Cir.0000151516.84238.37 (2005).
doi: 10.1161/01.Cir.0000151516.84238.37
pubmed: 15611366
Maier, J. A. M., Malpuech-Brugère, C., Zimowska, W., Rayssiguier, Y. & Mazur, A. Low magnesium promotes endothelial cell dysfunction: Implications for atherosclerosis, inflammation and thrombosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1689(1), 13–21. https://doi.org/10.1016/j.bbadis.2004.01.002 (2004).
doi: 10.1016/j.bbadis.2004.01.002
pubmed: 15158909
Ferrè, S. et al. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1802(11), 952–958. https://doi.org/10.1016/j.bbadis.2010.06.016 (2010).
doi: 10.1016/j.bbadis.2010.06.016
pubmed: 20600865
Bernardini, D., Nasulewic, A., Mazur, A. & Maier, J. A. Magnesium and microvascular endothelial cells: A role in inflammation and angiogenesis. Front. Biosci. J. Virtual Libr. 10, 1177–1182. https://doi.org/10.2741/1610 (2005).
doi: 10.2741/1610
Rochelson, B., Dowling, O., Schwartz, N. & Metz, C. N. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFkappaB pathway. J. Reprod. Immunol. 73(2), 101–107. https://doi.org/10.1016/j.jri.2006.06.004 (2007).
doi: 10.1016/j.jri.2006.06.004
pubmed: 16952401
Weglicki, W. B., Phillips, T. M., Freedman, A. M., Cassidy, M. M. & Dickens, B. F. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol. Cell. Biochem. 110(2), 169–173. https://doi.org/10.1007/BF02454195 (1992).
doi: 10.1007/BF02454195
pubmed: 1584207
Malpuech-Brugère, C. et al. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis. Life Sci. 63(20), 1815–1822. https://doi.org/10.1016/S0024-3205(98)00455-X (1998).
doi: 10.1016/S0024-3205(98)00455-X
pubmed: 9820125
Mazur, A. et al. Magnesium and the inflammatory response: Potential physiopathological implications. Arch. Biochem. Biophys. 458(1), 48–56. https://doi.org/10.1016/j.abb.2006.03.031 (2007).
doi: 10.1016/j.abb.2006.03.031
pubmed: 16712775
Zierler, S. et al. TRPM7 kinase activity regulates murine mast cell degranulation. J. Physiol. 594(11), 2957–2970. https://doi.org/10.1113/JP271564 (2016).
doi: 10.1113/JP271564
pubmed: 26660477
pmcid: 4887679
Libako, P., Nowacki, W., Rock, E., Rayssiguier, Y. & Mazur, A. Phagocyte priming by low magnesium status: Input to the enhanced inflammatory and oxidative stress responses. Magn. Res. 23(1), 1–4. https://doi.org/10.1684/mrh.2009.0201 (2010).
doi: 10.1684/mrh.2009.0201