Dietary acid load adopts the effect of ApoB ins/del genetic variant (rs11279109) on obesity trait, cardiovascular markers, lipid profile, and serum leptin level among patients with diabetes: a cross-sectional study.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 Oct 2024
Historique:
received: 05 05 2023
accepted: 04 10 2024
medline: 28 10 2024
pubmed: 28 10 2024
entrez: 28 10 2024
Statut: epublish

Résumé

ApoB insertion/deletion (ins/del) genetic variant (rs11279109) is thought to be related to cardio-metabolic markers and obesity. This association has the potential to be modified by dietary patterns. Since the majority of studies concerned the role of dietary acid load (DAL) or ApoB in type 2 diabetes mellitus (T2DM) and its complications independently, and due to the insufficient data regarding the possible interactions between ApoB genetic variants and DAL on anthropometric and metabolic markers, we aimed to study the interaction between this genetic variant and dietary acid load (DAL) on cardio-metabolic markers, along with leptin among Iranian individuals with T2DM. 700 T2DM patients were randomly recruited. A validated semi-quantitative food frequency questionnaire was used for DAL calculation including potential renal acid load (PRAL) and net-endogenous acid production (NEAP). The polymerase chain reaction was used for genotyping the ApoB ins/del (rs11279109). The general linear model was applied to find the interactions in the crude and adjusted models. Patients with del/del genotype (rs11279109) with high PRAL intake have lower low-density lipoprotein cholesterol (LDL-C) (P

Identifiants

pubmed: 39465244
doi: 10.1038/s41598-024-75352-x
pii: 10.1038/s41598-024-75352-x
doi:

Substances chimiques

Leptin 0
Biomarkers 0
Apolipoprotein B-100 0
APOB protein, human 0
Lipids 0
Acids 0
Apolipoproteins B 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25650

Informations de copyright

© 2024. The Author(s).

Références

Hameed, I. et al. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes 6(4), 598 (2015).
pubmed: 25987957 pmcid: 4434080 doi: 10.4239/wjd.v6.i4.598
Wright, A. K. et al. Life expectancy and cause-specific mortality in type 2 diabetes: A population-based cohort study quantifying relationships in ethnic subgroups. Diabetes Care 40(3), 338–345 (2017).
pubmed: 27998911 doi: 10.2337/dc16-1616
Naeini, Z. et al. Effects of DHA-enriched fish oil on gene expression levels of p53 and NF-κB and PPAR-γ activity in PBMCs of patients with T2DM: A randomized, double-blind, clinical trial. Nutr. Metab. Cardiovasc. Dis. 30(3), 441–447 (2020).
pubmed: 31831363 doi: 10.1016/j.numecd.2019.10.012
Leon, B. M. & Maddox, T. M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6(13), 1246 (2015).
pubmed: 26468341 pmcid: 4600176 doi: 10.4239/wjd.v6.i13.1246
Narindrarangkura, P., Bosl, W., Rangsin, R. & Hatthachote, P. Prevalence of dyslipidemia associated with complications in diabetic patients: A nationwide study in Thailand. Lipids Health Dis. 18(1), 1–8 (2019).
doi: 10.1186/s12944-019-1034-3
Howard, B. V. Insulin resistance and lipid metabolism. Am. J. Cardiol. 84(1), 28–32 (1999).
doi: 10.1016/S0002-9149(99)00355-0
Rafiee, M. et al. The interaction between apolipoprotein b insertion/deletion polymorphism and macronutrient intake on lipid profile and serum leptin and ghrelin levels in type 2 diabetes mellitus patients. Eur. J. Nutr. 58(3), 1055–1065 (2019).
pubmed: 29374794 doi: 10.1007/s00394-018-1621-5
Ainsworth, B. E. et al. Compendium of physical activities: classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 25(1), 71–80 (1993).
pubmed: 8292105 doi: 10.1249/00005768-199301000-00011
Devaraj, S., Dasu, M. R. & Jialal, I. Diabetes is a proinflammatory state: A translational perspective. Expert. Rev. Endocrinol. Metab. 5(1), 19–28 (2010).
pubmed: 20204165 pmcid: 2829992 doi: 10.1586/eem.09.44
Olokoba, A. B., Obateru, O. A. & Olokoba, L. B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 27(4), 269 (2012).
pubmed: 23071876 pmcid: 3464757 doi: 10.5001/omj.2012.68
Chasman, D. I. et al. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and Apolipoprotein B among 6382 white women in genome-wide analysis with replication. Circulation: Cardiovasc. Genet. 1(1), 21–30 (2008).
Johansen, C. T., Kathiresan, S. & Hegele, R. A. Genetic determinants of plasma triglycerides. J. Lipid Res. 52(2), 189–206 (2011).
pubmed: 21041806 pmcid: 3023540 doi: 10.1194/jlr.R009720
Al-Bustan, S. A., Alnaqeeb, M. A., Annice, B. G., Ebrahim, G. A. & Refai, T. M. Genetic association of APOB polymorphisms with variation in serum lipid profile among the Kuwait population. Lipids Health Dis 13, 157. https://doi.org/10.1186/1476-511x-13-157 (2014).
doi: 10.1186/1476-511x-13-157 pubmed: 25292352 pmcid: 4201729
Onat, A. et al. Serum apolipoprotein B predicts dyslipidemia, metabolic syndrome and in women, hypertension and diabetes, independent of markers of central obesity and inflammation. Int. J. Obes. (Lond.) 31(7), 1119–1125. https://doi.org/10.1038/sj.ijo.0803552 (2007).
doi: 10.1038/sj.ijo.0803552 pubmed: 17299378
Faraj, M. et al. Apolipoprotein B: A predictor of inflammatory status in postmenopausal overweight and obese women. Diabetologia 49(7), 1637–1646. https://doi.org/10.1007/s00125-006-0259-7 (2006).
doi: 10.1007/s00125-006-0259-7 pubmed: 16752182
Huang, L. S., de Graaf, J. & Breslow, J. L. ApoB gene MspI RFLP in exon 26 changes amino acid 3611 from Arg to Gln. J. Lipid. Res. 29(1), 63–67 (1988).
pubmed: 2895796 doi: 10.1016/S0022-2275(20)38556-4
Niu, C. et al. Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: A meta-analysis. Lip. Health Dis. 16(1), 1–20 (2017).
Siri, P. et al. Post-transcriptional Stimulation of the Assembly and Secretion of Triglyceride-rich Apolipoprotein B Lipoproteins in a Mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance*. J. Biol. Chem. 276(49), 46064–46072. https://doi.org/10.1074/jbc.M108909200 (2001).
doi: 10.1074/jbc.M108909200 pubmed: 11598138
Visvikis, S., Chan, L., Siest, G., Drouin, P. & Boerwinkle, E. An insertion deletion polymorphism in the signal peptide of the human apolipoprotein B gene. Hum. Genet. 84(4), 373–375. https://doi.org/10.1007/BF00196239 (1990).
doi: 10.1007/BF00196239 pubmed: 2307462
Jenkins, D. J. et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 172(21), 1653–1660. https://doi.org/10.1001/2013.jamainternmed.70 (2012).
doi: 10.1001/2013.jamainternmed.70 pubmed: 23089999
Pajukanta, P. E. et al. The effects of the apolipoprotein B signal peptide (ins/del) and XbaI polymorphisms on plasma lipid responses to dietary change. Atherosclerosis 122(1), 1–10 (1996).
pubmed: 8724106 doi: 10.1016/0021-9150(95)05725-0
Rafiee, M. et al. Association between Insertion/Deletion Polymorphism of ApoB gene with dyslipidemia and obesity risk in patients with type 2 diabetes deletion polymorphism of ApoB gene with dyslipidemia and obesity risk in patients with type 2 diabetes. J. Obes. Overweig. 2(2), 204. https://doi.org/10.15744/2455-7633.2.301 (2016).
doi: 10.15744/2455-7633.2.301
Sturley, S. L. et al. Human apolipoprotein B signal sequence variants confer a secretion-defective phenotype when expressed in yeast. J. Biol. Chem. 269(34), 21670–21675 (1994).
pubmed: 8063810 doi: 10.1016/S0021-9258(17)31858-6
Heng, C., Saha, N. & Low, P. Evolution of the apolipoprotein B gene and coronary artery disease: A study in low and high risk Asians. Ann. Hum. Genet. 63(1), 45–62 (1999).
pubmed: 10738520 doi: 10.1046/j.1469-1809.1999.6310045.x
Horvath, A., Chorbov, V., Zaharova, B. & Ganev, V. Five polymorphisms of the apolipoprotein B gene in healthy Bulgarians. Hum. Biol. 75, 69–80 (2003).
pubmed: 12713147 doi: 10.1353/hub.2003.0022
Ruixing, Y. et al. Effect of the 3’APOB-VNTR polymorphism on the lipid profiles in the Guangxi Hei Yi Zhuang and Han populations. BMC Med. Genet. 8(1), 1–13 (2007).
doi: 10.1186/1471-2350-8-45
Kallel, A., Jemaa, R., Feki, M., El Asmi, M., Souissi, M., Sanhaji, H., Haj-Taieb, S., Omar, S., Kaabachi, N. XbaI polymorphism of apolipoprotein B gene in a Tunisian population: alleles frequencies and relationship with plasma lipid parameters. In Annales de biologie clinique 265–70 (2007).
Tsunoda, K., Harihara, S., Tanabe, Y. & Dashnyam, B. Polymorphism of the apolipoprotein B gene and association with plasma lipid and lipoprotein levels in the Mongolian Buryat. Biochem. Genet. 50(3), 249–268 (2012).
pubmed: 21952877 doi: 10.1007/s10528-011-9468-y
Vimaleswaran, K. S. et al. The APOB insertion/deletion polymorphism (rs17240441) influences postprandial lipaemia in healthy adults. Nutr. Metab. (Lond.) 12, 7. https://doi.org/10.1186/s12986-015-0002-9 (2015).
doi: 10.1186/s12986-015-0002-9 pubmed: 25793007
Zhang, J.-Z. et al. Association between apolipoprotein B gene polymorphisms and the risk of coronary heart disease (CHD): An update meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 16(4), 827–837 (2015).
pubmed: 26537298 doi: 10.1177/1470320315615047
Cavalli, S. A. et al. Apolipoprotein B gene polymorphisms: Prevalence and impact on serum lipid concentrations in hypercholesterolemic individuals from Brazil. Clin. Chim. Acta 302(1–2), 189–203 (2000).
pubmed: 11074075 doi: 10.1016/S0009-8981(00)00367-3
Glisic, S., Prljic, J., Radovanovic, N. & Alavantic, D. Study of apoB gene signal peptide insertion/deletion polymorphism in a healthy Serbian population: No association with serum lipid levels. Clin. Chim. Acta 263(1), 57–66 (1997).
pubmed: 9247728 doi: 10.1016/S0009-8981(97)06556-X
Nelson, K. M., Reiber, G. & Boyko, E. J. Diet and exercise among adults with type 2 diabetes: Findings from the third national health and nutrition examination survey (NHANES III). Diabet. Care 25(10), 1722–1728 (2002).
doi: 10.2337/diacare.25.10.1722
Glasgow, R. E., Hampson, S. E., Strycker, L. A. & Ruggiero, L. Personal-model beliefs and social-environmental barriers related to diabetes self-management. Diabet. Care 20(4), 556–561 (1997).
doi: 10.2337/diacare.20.4.556
Harris, M. I. Diabetes in America: Epidemiology and scope of the problem. Diabet. Care 21(Supplement 3), C11–C14 (1998).
doi: 10.2337/diacare.21.3.C11
Toeller, M. et al. Nutritional intake of 2868 IDDM patients from 30 centres in Europe. Diabetologia 39(8), 929–939 (1996).
pubmed: 8858215 doi: 10.1007/BF00403912
Eeley, E. et al. UKPDS 18: Estimated dietary intake in type 2 diabetic patients randomly allocated to diet, sulphonylurea or insulin therapy. Diabet. Med. 13(7), 656–662 (1996).
pubmed: 8840101 doi: 10.1002/(SICI)1096-9136(199607)13:7<656::AID-DIA131>3.0.CO;2-5
Campbell, L. V., Barth, R. & Cosper, J. Unsatisfactory nutritional parameters in non-insulin-dependent diabetes mellitus. Med. J. Aust. 151(3), 146–150 (1989).
pubmed: 2755373 doi: 10.5694/j.1326-5377.1989.tb139599.x
Virtanen, S. M. et al. Comparison of diets of diabetic and non-diabetic elderly men in Finland, The Netherlands and Italy. Eur. J. Clin. Nutr. 54(3), 181–186 (2000).
pubmed: 10713738 doi: 10.1038/sj.ejcn.1600916
Tan, S.-Y., Batterham, M. & Tapsell, L. Increased intake of dietary polyunsaturated fat does not promote whole body or preferential abdominal fat mass loss in overweight adults. Obes. Facts 4(5), 352–357 (2011).
pubmed: 22166754 pmcid: 6444462 doi: 10.1159/000333433
Hietavala, E. et al. Effect of diet composition on acid–base balance in adolescents, young adults and elderly at rest and during exercise. Eur. J. Clin. Nutr. 69(3), 399–404 (2015).
pubmed: 25491498 doi: 10.1038/ejcn.2014.245
Siener, R. Dietary treatment of metabolic acidosis in chronic kidney disease. Nutrients 10(4), 512 (2018).
pubmed: 29677110 pmcid: 5946297 doi: 10.3390/nu10040512
Wu, T. et al. Associations between dietary acid load and biomarkers of inflammation and hyperglycemia in breast cancer survivors. Nutrients 11(8), 1913 (2019).
pubmed: 31443226 pmcid: 6723571 doi: 10.3390/nu11081913
Ostrowska, J., Janiszewska, J. & Szostak-Węgierek, D. Dietary acid load and cardiometabolic risk factors—A narrative review. Nutrients 12(11), 3419 (2020).
pubmed: 33171835 pmcid: 7695144 doi: 10.3390/nu12113419
Han, E. et al. Association between dietary acid load and the risk of cardiovascular disease: Nationwide surveys (KNHANES 2008–2011). Cardiovasc. Diabetol. 15(1), 1–14 (2016).
doi: 10.1186/s12933-016-0436-z
Fjell, A. M. et al. One-year brain atrophy evident in healthy aging. J. Neurosci. 29(48), 15223–15231 (2009).
pubmed: 19955375 pmcid: 2827793 doi: 10.1523/JNEUROSCI.3252-09.2009
Abbasalizad Farhangi, M., Nikniaz, L. & Nikniaz, Z. Higher dietary acid load potentially increases serum triglyceride and obesity prevalence in adults: An updated systematic review and meta-analysis. PLoS ONE 14(5), e0216547. https://doi.org/10.1371/journal.pone.0216547 (2019).
doi: 10.1371/journal.pone.0216547 pubmed: 31071141 pmcid: 6508739
Taskinen, M.-R. & Borén, J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239(2), 483–495 (2015).
pubmed: 25706066 doi: 10.1016/j.atherosclerosis.2015.01.039
Rafiee, M. et al. Dietary ω-3 polyunsaturated fatty acid intake modulates impact of Insertion/Deletion polymorphism of ApoB gene on obesity risk in type 2 diabetic patients. Nutrition 32(10), 1110–1115 (2016).
pubmed: 27210509 doi: 10.1016/j.nut.2016.03.012
Identification EPot, Overweight To, Adults Oi, Heart N, Lung, Institute B, Diabetes NIo, Digestive, Diseases K. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report: National Institutes of Health, National Heart, Lung, and Blood Institute, 1998.
Moghaddam, M. H. B. et al. The Iranian version of international physical activity questionnaire (IPAQ) in Iran: Content and construct validity, factor structure, internal consistency and stability. World Appl. Sci. J. 18, 1073–1080. https://doi.org/10.5829/idosi.wasj.2012.18.08.754 (2012).
doi: 10.5829/idosi.wasj.2012.18.08.754
Mirmiran, P., Esfahani, F. & Azizi, F. Relative validity and reliability of the food frequency questionnaire used to assess nutrient intakes: Tehran Lipid and Glucose Study. Iran J. Diabetes Lipid. 9(2), 185–197 (2009).
Ghaffarpour, M., Houshiar-Rad, A. & Kianfar, H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy 7(213), 42–58 (1999).
Frassetto, L. A., Todd, K. M., Morris, R. C. Jr. & Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 68(3), 576–583 (1998).
pubmed: 9734733 doi: 10.1093/ajcn/68.3.576
Remer, T., Dimitriou, T. & Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 77(5), 1255–1260 (2003).
pubmed: 12716680 doi: 10.1093/ajcn/77.5.1255
Miller, S., Dykes, D. & Polesky, H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16(3), 1215 (1988).
pubmed: 3344216 pmcid: 334765 doi: 10.1093/nar/16.3.1215
Süsleyici, B., Öztürk, M., Yilmazer, S., Cağatay, P. & Hatemi, H. Apolipoprotein B gene variants are involved in the determination of blood glucose and lipid levels in patients with non-insulin dependent diabetes mellitus. Cell Biochem. Funct. 24, 261–267. https://doi.org/10.1002/cbf.1218 (2006).
doi: 10.1002/cbf.1218
Marshall, H. W. et al. Apolipoprotein polymorphisms fail to define risk of coronary artery disease. Results of a prospective, angiographically controlled study. Circulation 89(2), 567–577. https://doi.org/10.1161/01.cir.89.2.567 (1994).
doi: 10.1161/01.cir.89.2.567 pubmed: 8313545
Gardemann, A. et al. Association of the insertion/deletion gene polymorphism of the apolipoprotein B signal peptide with myocardial infarction. Atherosclerosis 141(1), 167–175. https://doi.org/10.1016/s0021-9150(98)00161-0 (1998).
doi: 10.1016/s0021-9150(98)00161-0 pubmed: 9863550
Lamia, R. et al. Association of four apolipoprotein B polymorphisms with lipid profile and stenosis in Tunisian coronary patients. J. Genet. 91, 75–79. https://doi.org/10.1007/s12041-012-0127-9 (2012).
doi: 10.1007/s12041-012-0127-9 pubmed: 22546827
Vimaleswaran, K. S. et al. The APOB insertion/deletion polymorphism (rs17240441) influences postprandial Lipaemia in healthy adults. Nutr. Metab. 12(1), 7. https://doi.org/10.1186/s12986-015-0002-9 (2015).
doi: 10.1186/s12986-015-0002-9
Siri, P. et al. Post-transcriptional stimulation of the assembly and secretion of triglyceride-rich apolipoprotein B lipoproteins in a mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance. J. Boil. Chem. 276(49), 46064–46072. https://doi.org/10.1074/jbc.M108909200 (2001).
doi: 10.1074/jbc.M108909200
Twisk, J. et al. The role of the LDL receptor in apolipoprotein B secretion. J. Clin. Invest. 105(4), 521–532. https://doi.org/10.1172/jci8623 (2000).
doi: 10.1172/jci8623 pubmed: 10683382 pmcid: 289165
Li, A. C. et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 106(4), 523–531. https://doi.org/10.1172/jci10370 (2000).
doi: 10.1172/jci10370 pubmed: 10953027 pmcid: 380255
Mattevi, V. S., Coimbra, C. E. Jr., Santos, R. V., Salzano, F. M. & Hutz, M. H. Association of the low-density lipoprotein receptor gene with obesity in Native American populations. Hum. Genet. 106(5), 546–552. https://doi.org/10.1007/s004390000299 (2000).
doi: 10.1007/s004390000299 pubmed: 10914685
Maffei, M. et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1(11), 1155–1161. https://doi.org/10.1038/nm1195-1155 (1995).
doi: 10.1038/nm1195-1155 pubmed: 7584987
Halle, M. et al. Concurrent reductions of serum leptin and lipids during weight loss in obese men with type II diabetes. Am. J. Physiol. Endocrinol. Metab. 277(2), E277–E282. https://doi.org/10.1152/ajpendo.1999.277.2.E277 (1999).
doi: 10.1152/ajpendo.1999.277.2.E277
Du, H. et al. Dietary energy density in relation to subsequent changes of weight and waist circumference in European men and women. PLoS ONE 4(4), e5339. https://doi.org/10.1371/journal.pone.0005339 (2009).
doi: 10.1371/journal.pone.0005339 pubmed: 19396357 pmcid: 2669499
Mendoza, J. A., Drewnowski, A. & Christakis, D. A. Dietary energy density is associated with obesity and the metabolic syndrome in U.S. adults. Diabetes Care 30(4), 974–979. https://doi.org/10.2337/dc06-2188 (2007).
doi: 10.2337/dc06-2188 pubmed: 17229942
Murakami, K., Sasaki, S., Takahashi, Y. & Uenishi, K. Dietary energy density is associated with body mass index and waist circumference, but not with other metabolic risk factors, in free-living young Japanese women. Nutrition 23(11), 798–806. https://doi.org/10.1016/j.nut.2007.08.014 (2007).
doi: 10.1016/j.nut.2007.08.014 pubmed: 17936194
Jayedi, A. & Shab-Bidar, S. Dietary acid load and risk of type 2 diabetes: A systematic review and dose–response meta-analysis of prospective observational studies. Clin. Nutr. ESPEN 23, 10–18 (2018).
pubmed: 29460782 doi: 10.1016/j.clnesp.2017.12.005
Remer, T. Influence of nutrition on acid-base balance—Metabolic aspects. Eur. J. Nutr. 40(5), 214–220. https://doi.org/10.1007/s394-001-8348-1 (2001).
doi: 10.1007/s394-001-8348-1 pubmed: 11842946
Arisawa, K. et al. Association of dietary acid load with the prevalence of metabolic syndrome among participants in baseline survey of the Japan multi-institutional collaborative cohort study. Nutrients 12(6), 1605 (2020).
pubmed: 32486113 pmcid: 7352218 doi: 10.3390/nu12061605
Fatahi, S., Qorbani, M. & Azadbakht, L. Association between dietary acid load with weight status, dietray quality index (DQI), mean adequacy ratio and energy density among women. J. Gorgan Univ. Med. Sci. 21(1), 76–86 (2019).
Mozaffari, H., Namazi, N., Larijani, B., Bellissimo, N. & Azadbakht, L. Association of dietary acid load with cardiovascular risk factors and the prevalence of metabolic syndrome in Iranian women: A cross-sectional study. Nutrition 67–68, 110570. https://doi.org/10.1016/j.nut.2019.110570 (2019).
doi: 10.1016/j.nut.2019.110570 pubmed: 31568970
Murakami, K., Sasaki, S., Takahashi, Y. & Uenishi, K. Association between dietary acid–base load and cardiometabolic risk factors in young Japanese women. Br. J. Nutr. 100(3), 642–651 (2008).
pubmed: 18279559 doi: 10.1017/S0007114508901288
Mokhtary, N. et al. Association between dietary inflammatory indices (DII, EDII) and obesity with consideration of Insertion/Deletion Apo B polymorphism in type 2 diabetic patients. Obes. Med. 19, 100241. https://doi.org/10.1016/j.obmed.2020.100241 (2020).
doi: 10.1016/j.obmed.2020.100241
Mohamadinarab, M., Yekaninejad, M. S., Siassi, F. & Koohdani, F. Association between dietary inflammatory index and lipid profiles with consideration of Apo B Ins/ Del SNP in type 2 diabetic patients. Meta Gene 26, 100811. https://doi.org/10.1016/j.mgene.2020.100811 (2020).
doi: 10.1016/j.mgene.2020.100811
Becerra-Tomás, N., Papandreou, C. & Salas-Salvadó, J. Legume consumption and cardiometabolic health. Adv. Nutr. 10(Supplement_4), S437–S450. https://doi.org/10.1093/advances/nmz003 (2019).
doi: 10.1093/advances/nmz003 pubmed: 31728491 pmcid: 6855964
Hosseinpour-Niazi, S., Mirmiran, P., Hedayati, M. & Azizi, F. Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: A cross-over randomized clinical trial. Eur J. Clin. Nutr. 69(5), 592–597. https://doi.org/10.1038/ejcn.2014.228 (2015).
doi: 10.1038/ejcn.2014.228 pubmed: 25351652
Ha, V. et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. Can. Med. Assoc. J. 186(8), E252. https://doi.org/10.1503/cmaj.131727 (2014).
doi: 10.1503/cmaj.131727
Hermsdorff, H. H. M., Zulet, M. Á., Abete, I. & Martínez, J. A. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur. J. Nutr. 50(1), 61–69. https://doi.org/10.1007/s00394-010-0115-x (2011).
doi: 10.1007/s00394-010-0115-x pubmed: 20499072
Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H. & Winham, D. M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 21(2), 94–103. https://doi.org/10.1016/j.numecd.2009.08.012 (2011).
doi: 10.1016/j.numecd.2009.08.012 pubmed: 19939654
Zhang, Z. et al. A high legume low glycemic index diet improves serum lipid profiles in men. Lipids 45(9), 765–775. https://doi.org/10.1007/s11745-010-3463-7 (2010).
doi: 10.1007/s11745-010-3463-7 pubmed: 20734238 pmcid: 3461593
Crujeiras, A. B., Parra, D., Abete, I. & Martínez, J. A. A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic. Res. 41(4), 498–506. https://doi.org/10.1080/10715760601131935 (2007).
doi: 10.1080/10715760601131935 pubmed: 17454132
Anderson, J. W. & Major, A. W. Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 88(S3), 263–271. https://doi.org/10.1079/BJN2002716 (2002).
doi: 10.1079/BJN2002716
Tovar, J., Nilsson, A., Johansson, M. & Björck, I. Combining functional features of whole-grain barley and legumes for dietary reduction of cardiometabolic risk: A randomised cross-over intervention in mature women. Br. J. Nutr. 111(4), 706–714. https://doi.org/10.1017/S000711451300305X (2014).
doi: 10.1017/S000711451300305X pubmed: 24063257
Mohammadifard, N., Sarrafzadegan, N., Paknahad, Z. & Nouri, F. Inverse association of legume consumption and dyslipidemia: Isfahan Healthy Heart Program. J. Clin. Lipidol. 8(6), 584–593. https://doi.org/10.1016/j.jacl.2014.08.006 (2014).
doi: 10.1016/j.jacl.2014.08.006 pubmed: 25499941
Ruiz-Esparza-Cisneros, J., Vasconcelos-Ulloa, J. J., González-Mendoza, D., Beltrán-González, G. & Díaz-Molina, R. Effect of dietary intervention with a legume-based food product on malondialdehyde levels, HOMA index, and lipid profile. Endocrinología, Diabetes y Nutrición (English ed) 67(4), 235–244. https://doi.org/10.1016/j.endien.2019.08.007 (2020).
doi: 10.1016/j.endien.2019.08.007
Esmaillzadeh, A. & Azadbakht, L. Legume consumption is inversely associated with serum concentrations of adhesion molecules and inflammatory biomarkers among Iranian women. J. Nutr. 142(2), 334–339. https://doi.org/10.3945/jn.111.146167 (2011).
doi: 10.3945/jn.111.146167 pubmed: 22190025
Hartman, T. J. et al. Consumption of a legume-enriched, low-glycemic index diet is associated with biomarkers of insulin resistance and inflammation among men at risk for colorectal cancer. J. Nutr. 140(1), 60–67. https://doi.org/10.3945/jn.109.114249 (2009).
doi: 10.3945/jn.109.114249 pubmed: 19889807
Saraf-Bank, S., Esmaillzadeh, A., Faghihimani, E. & Azadbakht, L. Effect of non-soy legume consumption on inflammation and serum adiponectin levels among first-degree relatives of patients with diabetes: A randomized, crossover study. Nutrition 31(3), 459–465. https://doi.org/10.1016/j.nut.2014.09.015 (2015).
doi: 10.1016/j.nut.2014.09.015 pubmed: 25701335
Nilsson, A., Johansson, E., Ekström, L. & Björck, I. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS ONE 8(4), e59985. https://doi.org/10.1371/journal.pone.0059985 (2013).
doi: 10.1371/journal.pone.0059985 pubmed: 23577078 pmcid: 3618511
Trinidad, T. P., Mallillin, A. C., Loyola, A. S., Sagum, R. S. & Encabo, R. R. The potential health benefits of legumes as a good source of dietary fibre. Br. J. Nutr. 103(4), 569–574. https://doi.org/10.1017/S0007114509992157 (2010).
doi: 10.1017/S0007114509992157 pubmed: 19825218
Mallillin, A. C., Trinidad, T. P., Raterta, R., Dagbay, K. & Loyola, A. S. Dietary fibre and fermentability characteristics of root crops and legumes. Br. J. Nutr. 100(3), 485–488. https://doi.org/10.1017/S000711450891151X (2008).
doi: 10.1017/S000711450891151X pubmed: 18331664
Rochfort, S. & Panozzo, J. Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 55(20), 7981–7994. https://doi.org/10.1021/jf071704w (2007).
doi: 10.1021/jf071704w pubmed: 17784726
King, D. E. et al. Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. Arch. Intern. Med. 167(5), 502–506. https://doi.org/10.1001/archinte.167.5.502 (2007).
doi: 10.1001/archinte.167.5.502 pubmed: 17353499
Ma, Y. et al. Association between dietary fiber and serum C-reactive protein. Am. J. Clin. Nutr. 83(4), 760–766. https://doi.org/10.1093/ajcn/83.4.760 (2006).
doi: 10.1093/ajcn/83.4.760 pubmed: 16600925
Liu, M. & Dudley, S. C. Magnesium, oxidative stress inflammation, and cardiovascular disease. Antioxidants 9(10), 907 (2020).
pubmed: 32977544 pmcid: 7598282 doi: 10.3390/antiox9100907
Maier, J. A., Castiglioni, S., Locatelli, L., Zocchi, M. & Mazur, A. Magnesium and inflammation: Advances and perspectives. Semin. Cell Dev. Biol. 115, 37–44. https://doi.org/10.1016/j.semcdb.2020.11.002 (2021).
doi: 10.1016/j.semcdb.2020.11.002 pubmed: 33221129
Rayssiguier, Y., Libako, P., Nowacki, W. & Rock, E. Magnesium deficiency and metabolic syndrome: Stress and inflammation may reflect calcium activation. Magn. Res. 23(2), 73–80. https://doi.org/10.1684/mrh.2010.0208 (2010).
doi: 10.1684/mrh.2010.0208
Sontia, B., Montezano, A. C., Paravicini, T., Tabet, F. & Touyz, R. M. Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: Effects of magnesium. Hypertension 51(4), 915–921. https://doi.org/10.1161/hypertensionaha.107.100339 (2008).
doi: 10.1161/hypertensionaha.107.100339 pubmed: 18268139
Mak, I. T., Kramer, J. H. & Weglicki, W. B. Suppression of neutrophil and endothelial activation by substance P receptor blockade in the Mg-deficient rat. Magn. Res. 16(2), 91–97 (2003).
Guerrero-Romero, F. & Rodríguez-Morán, M. Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. Diabetes/Metab. Res Rev. 22(6), 471–476. https://doi.org/10.1002/dmrr.644 (2006).
doi: 10.1002/dmrr.644 pubmed: 16598698
Ahokas, R. A., Sun, Y., Bhattacharya, S. K., Gerling, I. C. & Weber, K. T. Aldosteronism and a proinflammatory vascular phenotype: Role of Mg2+, Ca2+, and H2O2 in peripheral blood mononuclear cells. Circulation 111(1), 51–57. https://doi.org/10.1161/01.Cir.0000151516.84238.37 (2005).
doi: 10.1161/01.Cir.0000151516.84238.37 pubmed: 15611366
Maier, J. A. M., Malpuech-Brugère, C., Zimowska, W., Rayssiguier, Y. & Mazur, A. Low magnesium promotes endothelial cell dysfunction: Implications for atherosclerosis, inflammation and thrombosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1689(1), 13–21. https://doi.org/10.1016/j.bbadis.2004.01.002 (2004).
doi: 10.1016/j.bbadis.2004.01.002 pubmed: 15158909
Ferrè, S. et al. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1802(11), 952–958. https://doi.org/10.1016/j.bbadis.2010.06.016 (2010).
doi: 10.1016/j.bbadis.2010.06.016 pubmed: 20600865
Bernardini, D., Nasulewic, A., Mazur, A. & Maier, J. A. Magnesium and microvascular endothelial cells: A role in inflammation and angiogenesis. Front. Biosci. J. Virtual Libr. 10, 1177–1182. https://doi.org/10.2741/1610 (2005).
doi: 10.2741/1610
Rochelson, B., Dowling, O., Schwartz, N. & Metz, C. N. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFkappaB pathway. J. Reprod. Immunol. 73(2), 101–107. https://doi.org/10.1016/j.jri.2006.06.004 (2007).
doi: 10.1016/j.jri.2006.06.004 pubmed: 16952401
Weglicki, W. B., Phillips, T. M., Freedman, A. M., Cassidy, M. M. & Dickens, B. F. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol. Cell. Biochem. 110(2), 169–173. https://doi.org/10.1007/BF02454195 (1992).
doi: 10.1007/BF02454195 pubmed: 1584207
Malpuech-Brugère, C. et al. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis. Life Sci. 63(20), 1815–1822. https://doi.org/10.1016/S0024-3205(98)00455-X (1998).
doi: 10.1016/S0024-3205(98)00455-X pubmed: 9820125
Mazur, A. et al. Magnesium and the inflammatory response: Potential physiopathological implications. Arch. Biochem. Biophys. 458(1), 48–56. https://doi.org/10.1016/j.abb.2006.03.031 (2007).
doi: 10.1016/j.abb.2006.03.031 pubmed: 16712775
Zierler, S. et al. TRPM7 kinase activity regulates murine mast cell degranulation. J. Physiol. 594(11), 2957–2970. https://doi.org/10.1113/JP271564 (2016).
doi: 10.1113/JP271564 pubmed: 26660477 pmcid: 4887679
Libako, P., Nowacki, W., Rock, E., Rayssiguier, Y. & Mazur, A. Phagocyte priming by low magnesium status: Input to the enhanced inflammatory and oxidative stress responses. Magn. Res. 23(1), 1–4. https://doi.org/10.1684/mrh.2009.0201 (2010).
doi: 10.1684/mrh.2009.0201

Auteurs

Zahra Esmaeily (Z)

Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.

Faezeh Abaj (F)

Department of nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia.

Zeinab Naeini (Z)

Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, PO Box: 141556117, Tehran, Iran.

Ehsan Alvandi (E)

School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.

Masoumeh Rafiee (M)

Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran. masomeh.rafiei@gmail.com.

Fariba Koohdani (F)

Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, PO Box: 141556117, Tehran, Iran. fkoohdan@tums.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH