Performance of the Flash10 COVID-19 point-of-care molecular test.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 10 2024
Historique:
received: 29 07 2024
accepted: 25 10 2024
medline: 28 10 2024
pubmed: 28 10 2024
entrez: 28 10 2024
Statut: epublish

Résumé

After the COVID-19 pandemic, fever clinics urgently require rapid nucleic acid tests to enhance their capacity for timely pathogen detection. This study evaluated the analytical performance and clinical utility of the Flash10 SARS-CoV-2 point-of-care test (Flash10 POCT) for detecting SARS-CoV-2 in patients with fever in the adult fever clinic in Beijing Tsinghua Changgung Hospital from August 1 to August 30, 2023. The analytical performance and clinical utility of the Flash10 POCT for detecting SARS-CoV-2 were assessed in 125 patients with fever syndrome in the adult fever clinic. The Flash10 POCT demonstrated an analytical precision of 3.1% for the Ct values of the ORF1ab gene and 2.9% for the Ct values of the N gene in SARS-CoV-2 nucleic acid testing. Furthermore, the Flash10 POCT demonstrated a lower limit of detection (LoD) of 100 copies/mL, with no detected aerosol contamination leakage. Of the 125 patients (median age 61.9 years, 52% male and 48% female), both the Flash10 POCT and RT-PCR tests yielded positive results for 100 patients and negative results for 25 patients (Fisher's exact test, p < 0.0001). The median turn-around-time for the Flash10 POCT was significantly shorter, at 1.05 h, compared to 16.15 h required for RT-PCR tests (Wilcoxon signed rank test, p < 0.0001). The Flash10 POCT showed high analytical performance, achieving a 100% detection rate for SARS-CoV-2 compared to RT-PCR tests, while also exhibiting a significantly shorter turn-around-time. Implementing the Flash10 POCT had the potential to expedite the care of adults presenting with fever.

Identifiants

pubmed: 39465327
doi: 10.1038/s41598-024-77837-1
pii: 10.1038/s41598-024-77837-1
doi:

Substances chimiques

ORF1ab polyprotein, SARS-CoV-2 0
RNA, Viral 0
Viral Proteins 0
Polyproteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25622

Subventions

Organisme : the Education Reform Project of Tsinghua University
ID : ZY01_02
Organisme : the Beijing High-level Public Health Technical Personnel Project
ID : 2023-03-03

Informations de copyright

© 2024. The Author(s).

Références

Almutairi, N. & Schwartz, R. A. COVID-19 with dermatologic manifestations and implications: an unfolding conundrum. Dermatol. Ther. 33 (5), e13544. https://doi.org/10.1111/dth.13544 (2020).
doi: 10.1111/dth.13544 pubmed: 32385869 pmcid: 7261983
Schwartz, R. A. & Kapila, R. Pandemics throughout the centuries. Clin. Dermatol. 39 (1), 5–8. https://doi.org/10.1016/j.clindermatol.2020.12.006 (2021).
doi: 10.1016/j.clindermatol.2020.12.006 pubmed: 33972052
Holshue, M. L. et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382 (10), 929–936. https://doi.org/10.1056/NEJMoa2001191 (2020).
doi: 10.1056/NEJMoa2001191 pubmed: 32004427 pmcid: 7092802
Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7 (2020).
doi: 10.1016/S0140-6736(20)30211-7 pubmed: 32007143 pmcid: 7135076
Axenhus, M., Schedin-Weiss, S., Tjernberg, L. & Winblad, B. The impact of the COVID-19 pandemic on neurosurgery in the elderly population in Sweden. BMC Public. Health. 24 (1), 823. https://doi.org/10.1186/s12889-024-18332-0 (2024).
doi: 10.1186/s12889-024-18332-0 pubmed: 38491396 pmcid: 10941451
Schwartz, R. A. & Suskind, R. M. Post-COVID-19 neuropsychiatric manifestations: a suggested therapeutic approach to ‘long COVID’ with azithromycin. Epidemiol. Infect. 152, e34. https://doi.org/10.1017/S0950268823001966 (2023).
doi: 10.1017/S0950268823001966 pubmed: 38097277 pmcid: 10894889
Rebbapragada, A. et al. Performance of the Cue COVID-19 point-of-care molecular test: insights from a multi-site clinic service model. Microbiol. Spectr. 11 (5), e0406422. https://doi.org/10.1128/spectrum.04064-22 (2023).
doi: 10.1128/spectrum.04064-22 pubmed: 37728337
Mousavi, S. M. et al. Recent advances in quantum dot-based lateral flow immunoassays for the rapid, point-of-care diagnosis of COVID-19. Biosens. (Basel). 13 (8), 786. https://doi.org/10.3390/bios13080786 (2023).
doi: 10.3390/bios13080786
Dorta-Gorrín, A., Navas-Méndez, J., Gozalo-Margüello, M., Miralles, L. & García-Hevia, L. Detection of SARS-CoV-2 based on nucleic acid amplification tests (NAATs) and its integration into nanomedicine and microfluidic devices as point-of-care testing (POCT). Int. J. Mol. Sci. 24 (12), 10233. https://doi.org/10.3390/ijms241210233 (2023).
doi: 10.3390/ijms241210233 pubmed: 37373381 pmcid: 10299269
Xing, W. et al. A highly automated mobile laboratory for on-site molecular diagnostics in the COVID-19 pandemic. Clin. Chem. 67 (4), 672–683. https://doi.org/10.1093/clinchem/hvab027 (2021).
doi: 10.1093/clinchem/hvab027 pubmed: 33788940 pmcid: 8083610
Wang, D. et al. Validation of the analytical performance of nine commercial RT-qPCR kits for SARS-CoV-2 detection using certified reference material. J. Virol. Methods. 298, 114285. https://doi.org/10.1016/j.jviromet.2021.114285 (2021).
doi: 10.1016/j.jviromet.2021.114285 pubmed: 34520809 pmcid: 8434693
Yang, M. et al. Performance verification of five commercial RT-qPCR diagnostic kits for SARS-CoV-2. Clin. Chim. Acta. 525, 46–53. https://doi.org/10.1016/j.cca.2021.12.004 (2022).
doi: 10.1016/j.cca.2021.12.004 pubmed: 34902345
Wang, Y. et al. Comparison of the performance of two real-time fluorescent quantitative PCR kits for the detection of SARS-CoV-2 nucleic acid: a study based on large real clinical samples. Virol. J. 19 (1), 191. https://doi.org/10.1186/s12985-022-01922-y (2022).
doi: 10.1186/s12985-022-01922-y pubmed: 36401275 pmcid: 9675236
Li, R. et al. Evaluation of a fluorescent immunochromatography test for fecal calprotectin. J. Clin. Lab. Anal. e23059. https://doi.org/10.1002/jcla.23059 (2019).
Xiao, Z. et al. Rapid and accurate detection of SARS-CoV-2 using the RHAM technology. Sci. Rep. 13 (1), 22798. https://doi.org/10.1038/s41598-023-49733-7 (2023).
doi: 10.1038/s41598-023-49733-7 pubmed: 38129524 pmcid: 10739982
Meng, X. et al. Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2. Biosens. Bioelectron. 217, 114739. https://doi.org/10.1016/j.bios.2022.114739 (2022).
doi: 10.1016/j.bios.2022.114739 pubmed: 36155953 pmcid: 9484135
Li, R. et al. Centrifugal microfluidic-based multiplex recombinase polymerase amplification assay for rapid detection of SARS-CoV-2. iScience. 26 (3), 106245. https://doi.org/10.1016/j.isci.2023.106245 (2023).
doi: 10.1016/j.isci.2023.106245 pubmed: 36845031 pmcid: 9941069
Houwen, C. et al. Diagnostic performances of four commercially available assays for the identification of SARS-CoV-2, influenza type A/B virus and RSV. Diagn. Microbiol. Infect. Dis. 106 (4), 115970. https://doi.org/10.1016/j.diagmicrobio.2023.115970 (2023).
doi: 10.1016/j.diagmicrobio.2023.115970 pubmed: 37290260 pmcid: 10124101
Daum, L. T., Rodriguez, J. D., Ward, S. R. & Chambers, J. P. Extraction-free detection of sars-cov-2 viral rna using lumiradx’s rna star complete assay from clinical nasal swabs stored in a novel collection and transport medium. Diagnostics (Basel). 13 (18), 3010. https://doi.org/10.3390/diagnostics13183010 (2023).
doi: 10.3390/diagnostics13183010 pubmed: 37761377
Agarwal, S. et al. Lateral flow-based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use. Anal. Bioanal. Chem. 414 (10), 3177–3186. https://doi.org/10.1007/s00216-022-03880-4 (2022).
doi: 10.1007/s00216-022-03880-4 pubmed: 35044487 pmcid: 8766626
Soares, R. et al. Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out. Lab. Chip. 21 (15), 2932–2944. https://doi.org/10.1039/d1lc00266j (2021).
doi: 10.1039/d1lc00266j pubmed: 34114589
Sakthivel, D. et al. Point-of-care diagnostic tools for surveillance of sars-cov-2 infections. Front. Public. Health. 9, 766871. https://doi.org/10.3389/fpubh.2021.766871 (2021).
doi: 10.3389/fpubh.2021.766871 pubmed: 34900912 pmcid: 8655681
Crocker, J. B. et al. Implementation of point-of-care testing in an ambulatory practice of an academic medical center. Am. J. Clin. Pathol. 142 (5), 640–646. https://doi.org/10.1309/AJCPYK1KV2KBCDDL (2014).
doi: 10.1309/AJCPYK1KV2KBCDDL pubmed: 25319979
Dinnes, J. et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 3 (3), CD013705. https://doi.org/10.1002/14651858.CD013705.pub2 (2021).
doi: 10.1002/14651858.CD013705.pub2 pubmed: 33760236
Laurence, C. O., Moss, J. R., Briggs, N. E. & Beilby, J. J. The cost-effectiveness of point of care testing in a general practice setting: results from a randomised controlled trial. BMC Health Serv. Res. 10, 165. https://doi.org/10.1186/1472-6963-10-165 (2010).
doi: 10.1186/1472-6963-10-165 pubmed: 20546629 pmcid: 2905350
Li, R. et al. Evaluation of a novel micro/nanofluidic chip platform for the detection of influenza A and B virus in patients with influenza-like illness. AMB Express. 9 (1), 77. https://doi.org/10.1186/s13568-019-0791-8 (2019).
doi: 10.1186/s13568-019-0791-8 pubmed: 31139958 pmcid: 6538719
Ye, Y. China’s rolling COVID waves could hit every six months—infecting millions. Nature. 618 (7965), 442–443. https://doi.org/10.1038/d41586-023-01872-7 (2023).
doi: 10.1038/d41586-023-01872-7 pubmed: 37286677
Pan, Y. et al. Characterisation of SARS-CoV-2 variants in Beijing during 2022: an epidemiological and phylogenetic analysis. Lancet. 401 (10377), 664–672. https://doi.org/10.1016/S0140-6736(23)00129-0 (2023).
doi: 10.1016/S0140-6736(23)00129-0 pubmed: 36773619 pmcid: 9949854

Auteurs

Runqing Li (R)

Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China. lrqa00335@btch.edu.cn.
Laboratory Medicine Department of Tiantongyuan North Community Healthcare Center, Beijing, China. lrqa00335@btch.edu.cn.

Xiuying Zhao (X)

Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.

Kai Jiang (K)

Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.

Jie Tang (J)

Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.

Song Yang (S)

Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.

Jing Hu (J)

Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.

Xuzhu Ma (X)

Infectious Disease Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH