Performance of the Flash10 COVID-19 point-of-care molecular test.
Humans
COVID-19
/ diagnosis
Female
Male
SARS-CoV-2
/ genetics
Middle Aged
Aged
Point-of-Care Testing
Adult
Point-of-Care Systems
COVID-19 Nucleic Acid Testing
/ methods
Sensitivity and Specificity
Limit of Detection
Aged, 80 and over
Fever
/ diagnosis
RNA, Viral
/ genetics
Viral Proteins
Polyproteins
COVID-19
SARS-CoV-2
diagnostic
point-of-care testing
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 10 2024
27 10 2024
Historique:
received:
29
07
2024
accepted:
25
10
2024
medline:
28
10
2024
pubmed:
28
10
2024
entrez:
28
10
2024
Statut:
epublish
Résumé
After the COVID-19 pandemic, fever clinics urgently require rapid nucleic acid tests to enhance their capacity for timely pathogen detection. This study evaluated the analytical performance and clinical utility of the Flash10 SARS-CoV-2 point-of-care test (Flash10 POCT) for detecting SARS-CoV-2 in patients with fever in the adult fever clinic in Beijing Tsinghua Changgung Hospital from August 1 to August 30, 2023. The analytical performance and clinical utility of the Flash10 POCT for detecting SARS-CoV-2 were assessed in 125 patients with fever syndrome in the adult fever clinic. The Flash10 POCT demonstrated an analytical precision of 3.1% for the Ct values of the ORF1ab gene and 2.9% for the Ct values of the N gene in SARS-CoV-2 nucleic acid testing. Furthermore, the Flash10 POCT demonstrated a lower limit of detection (LoD) of 100 copies/mL, with no detected aerosol contamination leakage. Of the 125 patients (median age 61.9 years, 52% male and 48% female), both the Flash10 POCT and RT-PCR tests yielded positive results for 100 patients and negative results for 25 patients (Fisher's exact test, p < 0.0001). The median turn-around-time for the Flash10 POCT was significantly shorter, at 1.05 h, compared to 16.15 h required for RT-PCR tests (Wilcoxon signed rank test, p < 0.0001). The Flash10 POCT showed high analytical performance, achieving a 100% detection rate for SARS-CoV-2 compared to RT-PCR tests, while also exhibiting a significantly shorter turn-around-time. Implementing the Flash10 POCT had the potential to expedite the care of adults presenting with fever.
Identifiants
pubmed: 39465327
doi: 10.1038/s41598-024-77837-1
pii: 10.1038/s41598-024-77837-1
doi:
Substances chimiques
ORF1ab polyprotein, SARS-CoV-2
0
RNA, Viral
0
Viral Proteins
0
Polyproteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25622Subventions
Organisme : the Education Reform Project of Tsinghua University
ID : ZY01_02
Organisme : the Beijing High-level Public Health Technical Personnel Project
ID : 2023-03-03
Informations de copyright
© 2024. The Author(s).
Références
Almutairi, N. & Schwartz, R. A. COVID-19 with dermatologic manifestations and implications: an unfolding conundrum. Dermatol. Ther. 33 (5), e13544. https://doi.org/10.1111/dth.13544 (2020).
doi: 10.1111/dth.13544
pubmed: 32385869
pmcid: 7261983
Schwartz, R. A. & Kapila, R. Pandemics throughout the centuries. Clin. Dermatol. 39 (1), 5–8. https://doi.org/10.1016/j.clindermatol.2020.12.006 (2021).
doi: 10.1016/j.clindermatol.2020.12.006
pubmed: 33972052
Holshue, M. L. et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382 (10), 929–936. https://doi.org/10.1056/NEJMoa2001191 (2020).
doi: 10.1056/NEJMoa2001191
pubmed: 32004427
pmcid: 7092802
Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7 (2020).
doi: 10.1016/S0140-6736(20)30211-7
pubmed: 32007143
pmcid: 7135076
Axenhus, M., Schedin-Weiss, S., Tjernberg, L. & Winblad, B. The impact of the COVID-19 pandemic on neurosurgery in the elderly population in Sweden. BMC Public. Health. 24 (1), 823. https://doi.org/10.1186/s12889-024-18332-0 (2024).
doi: 10.1186/s12889-024-18332-0
pubmed: 38491396
pmcid: 10941451
Schwartz, R. A. & Suskind, R. M. Post-COVID-19 neuropsychiatric manifestations: a suggested therapeutic approach to ‘long COVID’ with azithromycin. Epidemiol. Infect. 152, e34. https://doi.org/10.1017/S0950268823001966 (2023).
doi: 10.1017/S0950268823001966
pubmed: 38097277
pmcid: 10894889
Rebbapragada, A. et al. Performance of the Cue COVID-19 point-of-care molecular test: insights from a multi-site clinic service model. Microbiol. Spectr. 11 (5), e0406422. https://doi.org/10.1128/spectrum.04064-22 (2023).
doi: 10.1128/spectrum.04064-22
pubmed: 37728337
Mousavi, S. M. et al. Recent advances in quantum dot-based lateral flow immunoassays for the rapid, point-of-care diagnosis of COVID-19. Biosens. (Basel). 13 (8), 786. https://doi.org/10.3390/bios13080786 (2023).
doi: 10.3390/bios13080786
Dorta-Gorrín, A., Navas-Méndez, J., Gozalo-Margüello, M., Miralles, L. & García-Hevia, L. Detection of SARS-CoV-2 based on nucleic acid amplification tests (NAATs) and its integration into nanomedicine and microfluidic devices as point-of-care testing (POCT). Int. J. Mol. Sci. 24 (12), 10233. https://doi.org/10.3390/ijms241210233 (2023).
doi: 10.3390/ijms241210233
pubmed: 37373381
pmcid: 10299269
Xing, W. et al. A highly automated mobile laboratory for on-site molecular diagnostics in the COVID-19 pandemic. Clin. Chem. 67 (4), 672–683. https://doi.org/10.1093/clinchem/hvab027 (2021).
doi: 10.1093/clinchem/hvab027
pubmed: 33788940
pmcid: 8083610
Wang, D. et al. Validation of the analytical performance of nine commercial RT-qPCR kits for SARS-CoV-2 detection using certified reference material. J. Virol. Methods. 298, 114285. https://doi.org/10.1016/j.jviromet.2021.114285 (2021).
doi: 10.1016/j.jviromet.2021.114285
pubmed: 34520809
pmcid: 8434693
Yang, M. et al. Performance verification of five commercial RT-qPCR diagnostic kits for SARS-CoV-2. Clin. Chim. Acta. 525, 46–53. https://doi.org/10.1016/j.cca.2021.12.004 (2022).
doi: 10.1016/j.cca.2021.12.004
pubmed: 34902345
Wang, Y. et al. Comparison of the performance of two real-time fluorescent quantitative PCR kits for the detection of SARS-CoV-2 nucleic acid: a study based on large real clinical samples. Virol. J. 19 (1), 191. https://doi.org/10.1186/s12985-022-01922-y (2022).
doi: 10.1186/s12985-022-01922-y
pubmed: 36401275
pmcid: 9675236
Li, R. et al. Evaluation of a fluorescent immunochromatography test for fecal calprotectin. J. Clin. Lab. Anal. e23059. https://doi.org/10.1002/jcla.23059 (2019).
Xiao, Z. et al. Rapid and accurate detection of SARS-CoV-2 using the RHAM technology. Sci. Rep. 13 (1), 22798. https://doi.org/10.1038/s41598-023-49733-7 (2023).
doi: 10.1038/s41598-023-49733-7
pubmed: 38129524
pmcid: 10739982
Meng, X. et al. Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2. Biosens. Bioelectron. 217, 114739. https://doi.org/10.1016/j.bios.2022.114739 (2022).
doi: 10.1016/j.bios.2022.114739
pubmed: 36155953
pmcid: 9484135
Li, R. et al. Centrifugal microfluidic-based multiplex recombinase polymerase amplification assay for rapid detection of SARS-CoV-2. iScience. 26 (3), 106245. https://doi.org/10.1016/j.isci.2023.106245 (2023).
doi: 10.1016/j.isci.2023.106245
pubmed: 36845031
pmcid: 9941069
Houwen, C. et al. Diagnostic performances of four commercially available assays for the identification of SARS-CoV-2, influenza type A/B virus and RSV. Diagn. Microbiol. Infect. Dis. 106 (4), 115970. https://doi.org/10.1016/j.diagmicrobio.2023.115970 (2023).
doi: 10.1016/j.diagmicrobio.2023.115970
pubmed: 37290260
pmcid: 10124101
Daum, L. T., Rodriguez, J. D., Ward, S. R. & Chambers, J. P. Extraction-free detection of sars-cov-2 viral rna using lumiradx’s rna star complete assay from clinical nasal swabs stored in a novel collection and transport medium. Diagnostics (Basel). 13 (18), 3010. https://doi.org/10.3390/diagnostics13183010 (2023).
doi: 10.3390/diagnostics13183010
pubmed: 37761377
Agarwal, S. et al. Lateral flow-based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use. Anal. Bioanal. Chem. 414 (10), 3177–3186. https://doi.org/10.1007/s00216-022-03880-4 (2022).
doi: 10.1007/s00216-022-03880-4
pubmed: 35044487
pmcid: 8766626
Soares, R. et al. Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out. Lab. Chip. 21 (15), 2932–2944. https://doi.org/10.1039/d1lc00266j (2021).
doi: 10.1039/d1lc00266j
pubmed: 34114589
Sakthivel, D. et al. Point-of-care diagnostic tools for surveillance of sars-cov-2 infections. Front. Public. Health. 9, 766871. https://doi.org/10.3389/fpubh.2021.766871 (2021).
doi: 10.3389/fpubh.2021.766871
pubmed: 34900912
pmcid: 8655681
Crocker, J. B. et al. Implementation of point-of-care testing in an ambulatory practice of an academic medical center. Am. J. Clin. Pathol. 142 (5), 640–646. https://doi.org/10.1309/AJCPYK1KV2KBCDDL (2014).
doi: 10.1309/AJCPYK1KV2KBCDDL
pubmed: 25319979
Dinnes, J. et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 3 (3), CD013705. https://doi.org/10.1002/14651858.CD013705.pub2 (2021).
doi: 10.1002/14651858.CD013705.pub2
pubmed: 33760236
Laurence, C. O., Moss, J. R., Briggs, N. E. & Beilby, J. J. The cost-effectiveness of point of care testing in a general practice setting: results from a randomised controlled trial. BMC Health Serv. Res. 10, 165. https://doi.org/10.1186/1472-6963-10-165 (2010).
doi: 10.1186/1472-6963-10-165
pubmed: 20546629
pmcid: 2905350
Li, R. et al. Evaluation of a novel micro/nanofluidic chip platform for the detection of influenza A and B virus in patients with influenza-like illness. AMB Express. 9 (1), 77. https://doi.org/10.1186/s13568-019-0791-8 (2019).
doi: 10.1186/s13568-019-0791-8
pubmed: 31139958
pmcid: 6538719
Ye, Y. China’s rolling COVID waves could hit every six months—infecting millions. Nature. 618 (7965), 442–443. https://doi.org/10.1038/d41586-023-01872-7 (2023).
doi: 10.1038/d41586-023-01872-7
pubmed: 37286677
Pan, Y. et al. Characterisation of SARS-CoV-2 variants in Beijing during 2022: an epidemiological and phylogenetic analysis. Lancet. 401 (10377), 664–672. https://doi.org/10.1016/S0140-6736(23)00129-0 (2023).
doi: 10.1016/S0140-6736(23)00129-0
pubmed: 36773619
pmcid: 9949854