Macrophage membrane-functionalized manganese dioxide nanomedicine for synergistic treatment of atherosclerosis by mitigating inflammatory storms and promoting cholesterol efflux.
Animals
Oxides
/ chemistry
Mice
Manganese Compounds
/ chemistry
Cholesterol
/ metabolism
Atherosclerosis
/ drug therapy
Macrophages
/ drug effects
Nanomedicine
/ methods
Reactive Oxygen Species
/ metabolism
Inflammation
/ drug therapy
RAW 264.7 Cells
Humans
Mice, Inbred C57BL
Cell Membrane
/ metabolism
Male
Foam Cells
/ metabolism
Disease Models, Animal
Atherosclerosis
Cholesterol efflux
Hollow mesoporous manganese dioxide
Inflammatory storm
Macrophage membranes
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
28 Oct 2024
28 Oct 2024
Historique:
received:
11
07
2024
accepted:
19
10
2024
medline:
28
10
2024
pubmed:
28
10
2024
entrez:
28
10
2024
Statut:
epublish
Résumé
Atherosclerosis (AS) poses a significant threat to human life and health. However, conventional antiatherogenic medications exhibit insufficient targeting precision and restricted therapeutic effectiveness. Moreover, during the progression of AS, macrophages undergo polarization toward the proinflammatory M1 phenotype and generate reactive oxygen species (ROS) to accelerate the occurrence of inflammatory storms, and ingest excess lipids to form foam cells by inhibiting cholesterol efflux. In our study, we developed a macrophage membrane-functionalized hollow mesoporous manganese dioxide nanomedicine (Col@HMnO
Identifiants
pubmed: 39465387
doi: 10.1186/s12951-024-02939-x
pii: 10.1186/s12951-024-02939-x
doi:
Substances chimiques
Oxides
0
Manganese Compounds
0
Cholesterol
97C5T2UQ7J
manganese dioxide
TF219GU161
Reactive Oxygen Species
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
664Subventions
Organisme : Chongqing Municipal Education Commission
ID : CYB23199
Organisme : National Natural Science Foundation of China
ID : No. 82302164
Organisme : National Natural Science Foundation of China
ID : No. 82102063
Organisme : National Natural Science Foundation of China
ID : No. 82271970
Organisme : Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission
ID : cstc2021jcyj -msxmX0040
Informations de copyright
© 2024. The Author(s).
Références
Chapman MJ, Zamorano JL, Parhofer KG. Reducing residual cardiovascular risk in Europe: therapeutic implications of European medicines agency approval of icosapent ethyl/eicosapentaenoic acid. Pharmacol Ther. 2022;237:108172.
pubmed: 35304222
doi: 10.1016/j.pharmthera.2022.108172
Valero-Elizondo J, Chouairi F, Khera R, Grandhi GR, Saxena A, Warraich HJ, Virani SS, Desai NR, Sasangohar F, Krumholz HM, et al. Atherosclerotic Cardiovascular Disease, Cancer, and financial toxicity among adults in the United States. JACC CardioOncol. 2021;3:236–46.
pubmed: 34396329
pmcid: 8352280
doi: 10.1016/j.jaccao.2021.02.006
Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.
pubmed: 33883728
doi: 10.1038/s41586-021-03392-8
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of Atherothrombotic Disease. Circ Res. 2016;118:535–46.
pubmed: 26892956
doi: 10.1161/CIRCRESAHA.115.307611
Zheng M, Wang X, Yin Y, Chen S, Guo C, Wu S, Yuan Y. New-onset age of metabolic-associated fatty liver disease and incident cardiovascular diseases: findings from prospective cohort. Innov Med. 2024;2:100064.
doi: 10.59717/j.xinn-med.2024.100064
Saba L, Saam T, Jäger HR, Yuan C, Hatsukami TS, Saloner D, Wasserman BA, Bonati LH, Wintermark M. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol. 2019;18:559–72.
pubmed: 30954372
doi: 10.1016/S1474-4422(19)30035-3
Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc 2017, 6.
Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schunkert H, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72.
pubmed: 28444290
pmcid: 5837225
doi: 10.1093/eurheartj/ehx144
Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 2020;17:216–28.
pubmed: 31578516
doi: 10.1038/s41569-019-0265-3
Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, Zhang B. Living macrophage-delivered Tetrapod PdH Nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and Autophagy activation. ACS Nano. 2022;16:15959–76.
pubmed: 36219731
doi: 10.1021/acsnano.2c03422
Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022;13:1039241.
pubmed: 36389728
pmcid: 9663996
doi: 10.3389/fimmu.2022.1039241
Yang Q, Jiang H, Wang Y, Leng X, Wang Y, Tong J, Zhou Y, Mo C, Peng J, Gao H. Plaque macrophage-targeting Nanosystems with Cooperative Co‐Regulation of ROS and TRAF6 for stabilization of atherosclerotic plaques. Adv Funct Mater 2023, 33.
Zhao J, Ling L, Zhu W, Ying T, Yu T, Sun M, Zhu X, Du Y, Zhang L. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis. J Controlled Release. 2023;353:1068–83.
doi: 10.1016/j.jconrel.2022.12.041
Gao C, Liu C, Chen Q, Wang Y, Kwong CHT, Wang Q, Xie B, Lee SMY, Wang R. Cyclodextrin-mediated conjugation of macrophage and liposomes for treatment of atherosclerosis. J Controlled Release. 2022;349:2–15.
doi: 10.1016/j.jconrel.2022.06.053
Sun W, Xu Y, Yao Y, Yue J, Wu Z, Li H, Shen G, Liao Y, Wang H, Zhou W. Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy. J Nanobiotechnol 2022, 20.
Menon D, Bhapkar A, Manchandia B, Charak G, Rathore S, Jha RM, Nahak A, Mondal M, Omrane M, Bhaskar AK, et al. ARL8B mediates lipid droplet contact and delivery to lysosomes for lipid remobilization. Cell Rep. 2023;42:113203.
pubmed: 37777960
doi: 10.1016/j.celrep.2023.113203
Hu G, Yuan Z, Wang J. Autophagy inhibition and ferroptosis activation during atherosclerosis: Hypoxia-inducible factor 1α inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages. Biomed Pharmacother 2023, 161.
Liu H, Hu L, Zhang D, Wang X, Wang S. Stem cell niches functionalized strategies for organ regeneration and manufacturing. Innov Med. 2023;1:100037.
doi: 10.59717/j.xinn-med.2023.100037
Yang H, Liu C, Wu Y, Yuan M, Huang J, Xia Y, Ling Q, Hoffmann PR, Huang Z, Chen T. Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. Nano Today 2022, 42.
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 2022;19:228–49.
pubmed: 34759324
doi: 10.1038/s41569-021-00629-x
Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67.
pubmed: 26892964
pmcid: 4762068
doi: 10.1161/CIRCRESAHA.115.306256
Xu M, Zhou Y, Ren C, Liang X, Li N. Palladium Hydride Nanopocket cubes and their H2-Therapy function in amplifying inhibition of Foam cells to attenuate atherosclerosis. Adv Funct Mater 2021, 31.
Tabas I, Bornfeldt KE. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ Res. 2020;126:1209–27.
pubmed: 32324504
pmcid: 7392397
doi: 10.1161/CIRCRESAHA.119.315939
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regenerative Biomaterials 2023, 10.
Cao Z, Yuan G, Zeng L, Bai L, Liu X, Wu M, Sun R, Chen Z, Jiang Y, Gao Q, et al. Macrophage-targeted Sonodynamic/Photothermal synergistic therapy for preventing atherosclerotic plaque progression using CuS/TiO2 Heterostructured Nanosheets. ACS Nano. 2022;16:10608–22.
pubmed: 35759554
doi: 10.1021/acsnano.2c02177
Pham LM, Kim E-C, Ou W, Phung CD, Nguyen TT, Pham TT, Poudel K, Gautam M, Nguyen HT, Jeong J-H et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials 2021, 269.
Hetherington I, Totary-Jain H. Mol Ther. 2022;30:3106.
pubmed: 36065464
pmcid: 9552812
doi: 10.1016/j.ymthe.2022.08.024
Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE. Lancet. 2023;401:1293.
pubmed: 36893777
doi: 10.1016/S0140-6736(23)00215-5
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for diagnosis and treatment of atherosclerosis. Adv Sci (Weinh). 2023;10:e2304294.
pubmed: 37897322
doi: 10.1002/advs.202304294
Hu B, Boakye-Yiadom KO, Yu W, Yuan ZW, Ho W, Xu X, Zhang XQ. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and related ischemic diseases. Adv Healthc Mater. 2020;9:e2000336.
pubmed: 32597562
doi: 10.1002/adhm.202000336
Abideen ZU, Pathak DR, Sabanci R, Manu M, Abela GS. The effect of colchicine on cholesterol crystal formation, expansion and morphology: a potential mechanism in atherosclerosis. Front Cardiovasc Med 2024, 11.
Tang J, Li T, Xiong X, Yang Q, Su Z, Zheng M, Chen Q. Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells. J Nanobiotechnol 2023, 21.
Robertson S, Martínez GJ, Payet CA, Barraclough JY, Celermajer DS, Bursill C, Patel S. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond). 2016;130:1237–46.
pubmed: 27129183
doi: 10.1042/CS20160090
Papageorgiou N, Briasoulis A, Lazaros G, Imazio M, Tousoulis D. Colchicine for prevention and treatment of cardiac diseases: a meta-analysis. Cardiovasc Ther. 2017;35:10–8.
pubmed: 27580061
doi: 10.1111/1755-5922.12226
Li Y, Che J, Chang L, Guo M, Bao X, Mu D, Sun X, Zhang X, Lu W, Xie J. CD47- and integrin α4/β1‐Comodified‐macrophage‐membrane‐coated nanoparticles enable delivery of colchicine to atherosclerotic plaque. Adv Healthc Mater 2021, 11.
Fernandez DM, Giannarelli C. Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat Rev Cardiol. 2022;19:43–58.
pubmed: 34267377
doi: 10.1038/s41569-021-00589-2
Wen Y, Chen L, Zhou L, Leng F, Yang Z, Yu C. Bionic receptor for atherosclerosis therapy: molecularly imprinted polymers mediate unique cholesterol efflux and inhibit inflammation. Chem Eng J 2022, 430.
Jia M, Ren W, Liu Y, Wang C, Zheng X, Zhang D, Tan X, Li C. Messenger Nanozyme for Reprogramming the Microenvironment of Rheumatoid Arthritis. ACS Appl Mater Interfaces. 2022;15:338–53.
pubmed: 36580409
doi: 10.1021/acsami.2c16458
He H, Han Q, Wang S, Long M, Zhang M, Li Y, Zhang Y, Gu N. Design of a multifunctional nanozyme for resolving the Proinflammatory Plaque Microenvironment and attenuating atherosclerosis. ACS Nano. 2023;17:14555–71.
pubmed: 37350440
doi: 10.1021/acsnano.3c01420
Wang J, Zhang W, Xie Z, Wang X, Luo Y, Jiang W, Liu Y, Wang Z, Ran H, Song W, Guo D. Magnetic nanodroplets for Enhanced Deep Penetration of Solid Tumors and simultaneous magnetothermal-sensitized immunotherapy against Tumor Proliferation and Metastasis. Adv Healthc Mater. 2022;11:e2201399.
pubmed: 36165612
doi: 10.1002/adhm.202201399
Hou J, Zhou J, Chang M, Bao G, Xu J, Ye M, Zhong Y, Liu S, Wang J, Zhang W, et al. LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioact Mater. 2022;16:120–33.
pubmed: 35386311
pmcid: 8958425
Lu H, Wang Y, Yu R. Immune cell membrane-coated nanoparticles for targeted myocardial ischemia/reperfusion injury therapy. Innov Med. 2023;1:100015.
doi: 10.59717/j.xinn-med.2023.100015
Wang Q, Duan Y, Jing H, Wu Z, Tian Y, Gong K, Guo Q, Zhang J, Sun Y, Li Z, Duan Y. Inhibition of atherosclerosis progression by modular micelles. J Control Release. 2023;354:294–304.
pubmed: 36638843
doi: 10.1016/j.jconrel.2023.01.020
Gu Y, Cui M, Wang W, Zhang J, Wang H, Zheng C, Lei L, Ji M, Chen W, Xu Y, Wang P. Visualization of the ferroptosis in atherosclerotic plaques with Nanoprobe Engineered by Macrophage Cell membranes. Anal Chem. 2023;96:281–91.
pubmed: 38153251
doi: 10.1021/acs.analchem.3c03999
Bai Y, Yao X, Wang X, Yin Y. Surface-initiated Redox Route to Hollow MnO2 nanostructures. ChemNanoMat. 2020;6:1186–90.
doi: 10.1002/cnma.202000246
Tang J, Li T, Xiong X, Yang Q, Su Z, Zheng M, Chen Q. Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells. J Nanobiotechnol. 2023;21:460.
doi: 10.1186/s12951-023-02228-z
Li Y, Che J, Chang L, Guo M, Bao X, Mu D, Sun X, Zhang X, Lu W, Xie J. CD47- and integrin α4/β1-Comodified-macrophage-membrane-coated nanoparticles enable delivery of colchicine to atherosclerotic plaque. Adv Healthc Mater. 2022;11:e2101788.
pubmed: 34786845
doi: 10.1002/adhm.202101788
Shu L, Fu F, Huang Z, Huang Y, Hu P, Pan X. AAPS PharmSciTech. 2020;21:321.
pubmed: 33200271
doi: 10.1208/s12249-020-01847-1
He J, Zhang W, Zhou X, Xu F, Zou J, Zhang Q, Zhao Y, He H, Yang H, Liu J. Bioactive Mater. 2023;19:115.
doi: 10.1016/j.bioactmat.2022.03.041
Forest V, Pourchez J. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: a too simplistic explanation that does not take into account the nanoparticle protein corona. Mater Sci Eng C Mater Biol Appl. 2017;70:889–96.
pubmed: 27770966
doi: 10.1016/j.msec.2016.09.016
Zhou G, Wang Y, Zhou R, Wang C, Jin Y, Qiu J, Hua C, Cao Y. Synthesis of amino-functionalized bentonite/CoFe(2)O(4)@MnO(2) magnetic recoverable nanoparticles for aqueous cd(2+) removal. Sci Total Environ. 2019;682:505–13.
pubmed: 31129538
doi: 10.1016/j.scitotenv.2019.05.218
Wei Y, Jana NR, Tan SJ, Ying JY. Surface coating directed cellular delivery of TAT-functionalized quantum dots. Bioconjug Chem. 2009;20:1752–8.
pubmed: 19681598
doi: 10.1021/bc8003777
Gao Y, Liu S, Zeng X, Guo Z, Chen D, Li S, Tian Z, Qu Y. Reduction of reactive oxygen species Accumulation using Gadolinium-Doped Ceria for the alleviation of atherosclerosis. ACS Appl Mater Interfaces. 2023;15:10414–25.
pubmed: 36802486
doi: 10.1021/acsami.2c20492
He J, Zhang W, Zhou X, Xu F, Zou J, Zhang Q, Zhao Y, He H, Yang H, Liu J. Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioactive Mater. 2023;19:115–26.
doi: 10.1016/j.bioactmat.2022.03.041
Zhao R, Ning X, Wang M, Wang H, Xing G, Wang L, Lu C, Yu A, Wang Y. A ROS-Responsive simvastatin Nano-Prodrug and its fibronectin-targeted Co-delivery System for Atherosclerosis Treatment. ACS Appl Mater Interfaces. 2022;14:25080–92.
pubmed: 35618653
doi: 10.1021/acsami.2c02354
Xu H, She P, Ma B, Zhao Z, Li G, Wang Y. ROS responsive nanoparticles loaded with lipid-specific AIEgen for atherosclerosis-targeted diagnosis and bifunctional therapy. Biomaterials 2022, 288.
Zhou H, You P, Liu H, Fan J, Tong C, Yang A, Jiang Y, Liu B. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. J Controlled Release. 2022;341:828–43.
doi: 10.1016/j.jconrel.2021.12.021
Zhang X, Centurion F, Misra A, Patel S, Gu Z. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment. Adv Drug Deliv Rev. 2023;194:114709.
pubmed: 36690300
doi: 10.1016/j.addr.2023.114709
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011;13:655–67.
pubmed: 21641547
pmcid: 3257518
doi: 10.1016/j.cmet.2011.03.023
Ouimet M, Marcel YL. Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol. 2012;32:575–81.
pubmed: 22207731
doi: 10.1161/ATVBAHA.111.240705
Ji Z, Yang G, Shahzidi S, Tkacz-Stachowska K, Suo Z, Nesland JM, Peng Q. Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Lett. 2006;244:182–9.
pubmed: 16427735
doi: 10.1016/j.canlet.2005.12.010
Vink A, Schoneveld AH, Lamers D, Houben AJ, van der Groep P, van Diest PJ, Pasterkamp G. HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis. 2007;195:e69–75.
pubmed: 17606258
doi: 10.1016/j.atherosclerosis.2007.05.026
Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, Pollak U, Koren G, Bentur Y. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol. 2010;48:407–14.
doi: 10.3109/15563650.2010.495348