Transcriptomic analysis of cellular senescence induced by ectopic expression of ATF6α in human breast cancer cells.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2024
Historique:
received: 18 04 2024
accepted: 17 08 2024
medline: 28 10 2024
pubmed: 28 10 2024
entrez: 28 10 2024
Statut: epublish

Résumé

The transcriptomic profile of cellular senescence is strongly associated with distinct cell types, the specific stressors triggering senescence, and temporal progression through senescence stages. This implies the potential necessity of conducting separate investigations for each cell type and a stressor inducing senescence. To elucidate the molecular mechanism that drives endoplasmic reticulum (ER) stress-induced cellular senescence in MCF-7 breast cancer cells, with a particular emphasis on the ATF6α branch of the unfolded protein response. We conducted transcriptomic analysis on MCF-7 cells by ectopic expression of ATF6α. Transcriptomic sequencing was conducted on MCF-7 cells at 6 and 9 hours post senescence induction through ATF6α ectopic expression. Comprehensive analyses encompassing enriched functional annotation, canonical pathway analysis, gene network analysis, upstream regulator analysis and gene set enrichment analysis were performed on Differentially Expressed Genes (DEGs) at 6 and 9 hours as well as time-related DEGs. Regulators and their targets identified from the upstream regulator analysis were validated through RNA interference, and their impact on cellular senescence was assessed by senescence-associated β-galactosidase staining. ATF6α ectopic expression resulted in the identification of 12 and 79 DEGs at 6 and 9 hours, respectively, employing criteria of a false discovery rate < 0.05 and a lower fold change (FC) cutoff |log2FC| > 1. Various analyses highlighted the involvement of the UPR and/or ER Stress Pathway. Upstream regulator analysis of 9 hour-DEGs identified six regulators and eleven target genes associated with processes related to cytostasis and 'cell viability and cell death of connective tissue cells.' Validation confirmed the significance of MAP2K1/2, GPAT4, and PDGF-BB among the regulators and DDIT3, PPP1R15A, and IL6 among the targets. Transcriptomic analyses and validation reveal the importance of the MAP2K1/2/GPAT4-DDIT3 pathway in driving cellular senescence following ATF6α ectopic expression in MCF-7 cells. This study contributes to our understanding of the initial molecular events underlying ER stress-induced cellular senescence in breast cancer cells, providing a foundation for exploring cell type- and stressor-specific responses in cellular senescence induction.

Sections du résumé

BACKGROUND BACKGROUND
The transcriptomic profile of cellular senescence is strongly associated with distinct cell types, the specific stressors triggering senescence, and temporal progression through senescence stages. This implies the potential necessity of conducting separate investigations for each cell type and a stressor inducing senescence. To elucidate the molecular mechanism that drives endoplasmic reticulum (ER) stress-induced cellular senescence in MCF-7 breast cancer cells, with a particular emphasis on the ATF6α branch of the unfolded protein response. We conducted transcriptomic analysis on MCF-7 cells by ectopic expression of ATF6α.
METHODS METHODS
Transcriptomic sequencing was conducted on MCF-7 cells at 6 and 9 hours post senescence induction through ATF6α ectopic expression. Comprehensive analyses encompassing enriched functional annotation, canonical pathway analysis, gene network analysis, upstream regulator analysis and gene set enrichment analysis were performed on Differentially Expressed Genes (DEGs) at 6 and 9 hours as well as time-related DEGs. Regulators and their targets identified from the upstream regulator analysis were validated through RNA interference, and their impact on cellular senescence was assessed by senescence-associated β-galactosidase staining.
RESULTS RESULTS
ATF6α ectopic expression resulted in the identification of 12 and 79 DEGs at 6 and 9 hours, respectively, employing criteria of a false discovery rate < 0.05 and a lower fold change (FC) cutoff |log2FC| > 1. Various analyses highlighted the involvement of the UPR and/or ER Stress Pathway. Upstream regulator analysis of 9 hour-DEGs identified six regulators and eleven target genes associated with processes related to cytostasis and 'cell viability and cell death of connective tissue cells.' Validation confirmed the significance of MAP2K1/2, GPAT4, and PDGF-BB among the regulators and DDIT3, PPP1R15A, and IL6 among the targets.
CONCLUSION CONCLUSIONS
Transcriptomic analyses and validation reveal the importance of the MAP2K1/2/GPAT4-DDIT3 pathway in driving cellular senescence following ATF6α ectopic expression in MCF-7 cells. This study contributes to our understanding of the initial molecular events underlying ER stress-induced cellular senescence in breast cancer cells, providing a foundation for exploring cell type- and stressor-specific responses in cellular senescence induction.

Identifiants

pubmed: 39466820
doi: 10.1371/journal.pone.0309749
pii: PONE-D-24-15574
doi:

Substances chimiques

Activating Transcription Factor 6 0
ATF6 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0309749

Informations de copyright

Copyright: © 2024 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exit.

Auteurs

Ju Won Kim (JW)

Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.

So-Hyun Bae (SH)

Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea.

Yesol Moon (Y)

Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.
Korea Institute of Molecular Medicine and Nutrition, Seoul, South Korea.

Eun Kyung Kim (EK)

Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.
Korea Institute of Molecular Medicine and Nutrition, Seoul, South Korea.

Yongjin Kim (Y)

Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.
Korea Institute of Molecular Medicine and Nutrition, Seoul, South Korea.

Yun Gyu Park (YG)

Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.
Korea Institute of Molecular Medicine and Nutrition, Seoul, South Korea.

Mi-Ryung Han (MR)

Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea.

Jeongwon Sohn (J)

Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.
Korea Institute of Molecular Medicine and Nutrition, Seoul, South Korea.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH