Pathological tissue changes in brain tumors affect the pH-sensitivity of the T1-corrected apparent exchange dependent relaxation (AREX) of the amide protons.
APT‐CEST
AREX
MR‐spectroscopy
T1‐relaxometry
pH
Journal
NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233
Informations de publication
Date de publication:
28 Oct 2024
28 Oct 2024
Historique:
revised:
12
10
2024
received:
09
06
2024
accepted:
15
10
2024
medline:
28
10
2024
pubmed:
28
10
2024
entrez:
28
10
2024
Statut:
aheadofprint
Résumé
Measuring the intracellular pH (pHi) is of interest for brain tumor diagnostics. Common metrics of CEST imaging like the amide proton transfer-weighted (APTw) MTR
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e5285Subventions
Organisme : Else Kröner-Fresenius-Stiftung
Informations de copyright
© 2024 The Author(s). NMR in Biomedicine published by John Wiley & Sons Ltd.
Références
Villalba M, Rathore MG, Lopez‐Royuela N, Krzywinska E, Garaude J, Allende‐Vega N. From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol. 2013;45(1):106‐113. doi:10.1016/j.biocel.2012.04.024
Weyandt JD, Thompson CB, Giaccia AJ, Rathmell WK. Metabolic alterations in cancer and their potential as therapeutic targets. Am Soc Clin Oncol Educ Book. 2017;37:825‐832. doi:10.1200/EDBK_175561
Lingl JP, Wunderlich A, Goerke S, et al. The value of APTw CEST MRI in routine clinical assessment of human brain tumor patients at 3T. Diagnostics. 2022;12(2):490. doi:10.3390/diagnostics12020490
Jiang S, Zou T, Eberhart CG, et al. Predicting IDH mutation status in grade II gliomas using amide proton transfer‐weighted (APTw) MRI. Magn Reson Med. 2017;78(3):1100‐1109. doi:10.1002/mrm.26820
Desmond KL, Mehrabian H, Chavez S, et al. Chemical exchange saturation transfer for predicting response to stereotactic radiosurgery in human brain metastasis. In: Magnetic resonance in medicine. Wiley Online Library. Accessed February 8, 2024; 2017. doi:10.1002/mrm.26470
Ratai EM, Zhang Z, Snyder BS, et al. Magnetic resonance spectroscopy as an early indicator of response to anti‐angiogenic therapy in patients with recurrent glioblastoma: RTOG 0625/ACRIN 6677. Neuro Oncol. 2013;15(7):936‐944. doi:10.1093/neuonc/not044
Hattingen E, Jurcoane A, Bähr O, et al. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol. 2011;13(12):1349‐1363. doi:10.1093/neuonc/nor132
Frontiers|CAR‐engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy. Accessed February 8, 2024. 10.3389/fimmu.2019.02683/full
Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592(7854):463‐468. doi:10.1038/s41586‐021‐03363‐z
Erecińska M, Deas J, Silver IA. The effect of pH on glycolysis and phosphofructokinase activity in cultured cells and synaptosomes. J Neurochem. 1995;65(6):2765‐2772. doi:10.1046/j.1471‐4159.1995.65062765.x
Chiche J, Ilc K, Laferrière J, et al. Hypoxia‐inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2008;69(1):358‐368. doi:10.1158/0008‐5472.CAN‐08‐2470
McLean LA, Roscoe J, Jørgensen NK, Gorin FA, Cala PM. Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol‐Cell Physiol. 2000;278(4):C676‐C688. doi:10.1152/ajpcell.2000.278.4.C676
Miranda‐Gonçalves V, Honavar M, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol. 2013;15(2):172‐188. doi:10.1093/neuonc/nos298
Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in cancer. Front Physiol. 2013;4:370. doi:10.3389/fphys.2013.00370
Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9(8):1085‐1090. doi:10.1038/nm907
Schüre JR, Shrestha M, Breuer S, et al. The pH sensitivity of APT‐CEST using phosphorus spectroscopy as a reference method. NMR Biomed. 2019;32(11):e4125. doi:10.1002/nbm.4125
Boyd PS, Breitling J, Korzowski A, et al. Mapping intracellular pH in tumors using amide and guanidyl CEST‐MRI at 9.4 T. Magn Reson Med. 2022;87(5):2436‐2452. doi:10.1002/mrm.29133
Preibisch C, Deichmann R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med. 2009;61(1):125‐135. doi:10.1002/mrm.21776
Volz S, Nöth U, Rotarska‐Jagiela A, Deichmann R. A fast B1‐mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T. Neuroimage. 2010;49(4):3015‐3026. doi:10.1016/j.neuroimage.2009.11.054
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143‐156. doi:10.1016/S1361‐8415(01)00036‐6
Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35‐43. doi:10.1006/jmre.1997.1244
Petroff OA, Prichard JW, Behar KL, Alger JR, den Hollander JA, Shulman RG. Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology. 1985;35(6):781‐788. doi:10.1212/wnl.35.6.781
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143‐155. doi:10.1002/hbm.10062
Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm, IEEE Journals & Magazine, IEEE Xplore. Accessed February 8, 2024. https://ieeexplore.ieee.org/document/906424
Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189‐194. doi:10.1148/radiology.153.1.6089263
Kim M, Gillen J, Landman BA, Zhou J, van Zijl PCM. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med. 2009;61(6):1441‐1450. doi:10.1002/mrm.21873
Zaiss M, Xu J, Goerke S, et al. Inverse Z‐spectrum analysis for spillover‐, MT‐, and T1 ‐corrected steady‐state pulsed CEST‐MRI—application to pH‐weighted MRI of acute stroke. NMR Biomed. 2014;27(3):240‐252. doi:10.1002/nbm.3054
Kofler F, Berger C, Waldmannstetter D, et al. BraTS toolkit: translating BraTS brain tumor segmentation algorithms into clinical and scientific practice. Front Neurosci. 2020;14:125. doi:10.3389/fnins.2020.00125
Mahesh M. The essential physics of medical imaging, third edition. Med Phys. 2013;40(7):077301. doi:10.1118/1.4811156
Wenger KJ, Hattingen E, Franz K, Steinbach JP, Bähr O, Pilatus U. Intracellular pH measured by 31P‐MR‐spectroscopy might predict site of progression in recurrent glioblastoma under antiangiogenic therapy. J Magn Reson Imaging. 2017;46:1200‐1208. doi:10.1002/jmri.25619
Peter SB, Nandhan VR. 31‐phosphorus magnetic resonance spectroscopy in evaluation of glioma and metastases in 3T MRI. Indian J Radiol Imaging. 2022;31(4):873‐881. doi:10.1055/s‐0041‐1741090
Bastin ME, Sinha S, Whittle IR, Wardlaw JM. Measurements of water diffusion and T1 values in peritumoural oedematous brain. Neuroreport. 2002;13(10):1335‐1340. doi:10.1097/00001756‐200207190‐00024
MacDonald HL, Bell BA, Smith MA, et al. Correlation of human NMR T1 values measured in vivo and brain water content. Br J Radiol. 1986;59(700):355‐357. doi:10.1259/0007‐1285‐59‐700‐355
Casagranda S, Mancini L, Gautier G, et al. Fluid suppression in CEST imaging affects predominantly IDH‐mutant 1p/19q retained gliomas with T2‐FLAIR mismatch. 2020. Accessed February 28, 2023. https://hal.science/hal-03241436
Schüre JR, Casagranda S, Sedykh M, et al. Fluid suppression in amide proton transfer‐weighted (APTw) CEST imaging: New theoretical insights and clinical benefits. Magn Reson Med. 91:1354‐1367. doi:10.1002/mrm.29915
Paech D, Zaiss M, Meissner JE, et al. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 tesla in glioblastoma patients. PLoS ONE. 2014;9(8):e104181. doi:10.1371/journal.pone.0104181
Rerich E, Zaiss M, Korzowski A, Ladd ME, Bachert P. Relaxation‐compensated CEST‐MRI at 7 T for mapping of creatine content and pH—preliminary application in human muscle tissue in vivo. NMR Biomed. 2015;28(11):1402‐1412. doi:10.1002/nbm.3367
Schüre JR. Evaluierung Der PH‐Sensitivität Der Amid Protonen Transfer ‐ Chemical Exchange Saturation Transfer Bildgebung Für Die Klinische Tumorbildgebung; 2022.
Chakravorty A, Steel T, Chaganti J. Accuracy of percentage of signal intensity recovery and relative cerebral blood volume derived from dynamic susceptibility‐weighted, contrast‐enhanced MRI in the preoperative diagnosis of cerebral tumours. Neuroradiol J. 2015;28(6):574‐583. doi:10.1177/1971400915611916
Durmo F, Rydhög A, Testud F, et al. Assessment of amide proton transfer weighted (APTw) MRI for pre‐surgical prediction of final diagnosis in gliomas. PLoS ONE. 2020;15(12):e0244003. doi:10.1371/journal.pone.0244003
Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med. 2004;52(3):679‐682. doi:10.1002/mrm.20178
Goerke S, Soehngen Y, Deshmane A, et al. Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T. Magn Reson Med. 2019;82(2):622‐632. doi:10.1002/mrm.27751
Yan K, Fu Z, Yang C, et al. Assessing amide proton transfer (APT) MRI contrast origins in 9 L gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol. 2015;17(4):479‐487. doi:10.1007/s11307‐015‐0828‐6
Paech D, Dreher C, Regnery S, et al. Relaxation‐compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high‐grade glioma patients. Eur Radiol. 2019;29(9):4957‐4967. doi:10.1007/s00330‐019‐06066‐2