Exposure to antibiotics and risk of latent autoimmune diabetes in adults and type 2 diabetes: results from a Swedish case-control study (ESTRID) and the Norwegian HUNT study.
Antibacterial agent
Case–control study
Diabetes mellitus
ESTRID
HUNT
LADA
Latent autoimmune diabetes in adults
Registries
Type 2 diabetes
Journal
Diabetologia
ISSN: 1432-0428
Titre abrégé: Diabetologia
Pays: Germany
ID NLM: 0006777
Informations de publication
Date de publication:
28 Oct 2024
28 Oct 2024
Historique:
received:
29
04
2024
accepted:
17
09
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
aheadofprint
Résumé
Some studies find an increased risk of type 1 diabetes in children exposed to antibiotics. We investigated if exposure to antibiotics increases the risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. We used data from a Swedish case-control study (Epidemiological Study of Risk Factors for LADA and Type 2 Diabetes [ESTRID]: LADA, n=597; type 2 diabetes, n=2065; control participants matched on participation time, n=2386) and a case-control study nested within the Norwegian Trøndelag Health Study (HUNT) (n=82/1279/2050). Anatomical Therapeutic Chemical (ATC) codes indicating antibiotic dispensations were retrieved from the Swedish National Prescribed Drug Register and Norwegian Prescription Database. Multivariable adjusted ORs with 95% CIs were estimated by conditional logistic regression and pooled using fixed-effects inverse-variance weighting. We observed no increased risk of LADA with exposure to antibiotics up to 1 year (OR We found no evidence that exposure to broad-spectrum antibiotics up to 10 years prior to diagnosis increases the risk of LADA. There was some indication of increased LADA risk with exposure to narrow-spectrum antibiotics, which warrants further investigation.
Identifiants
pubmed: 39467872
doi: 10.1007/s00125-024-06302-5
pii: 10.1007/s00125-024-06302-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Vetenskapsrådet
ID : 2018-03035
Organisme : Vetenskapsrådet
ID : 2020-02191
Organisme : Forskningsrådet om Hälsa, Arbetsliv och Välfärd
ID : 2018-00337
Organisme : Swedish Foundation for Strategic Research
ID : IRC15-0067
Organisme : Novo Nordisk Fonden
ID : NNF19OC0057274
Organisme : Novo Nordisk Fonden
ID : NNF21OC0070457
Organisme : exodiab
ID : 2009-1039
Informations de copyright
© 2024. The Author(s).
Références
Pociot F, Lernmark Å (2016) Genetic risk factors for type 1 diabetes. Lancet 387(10035):2331–2339. https://doi.org/10.1016/S0140-6736(16)30582-7
doi: 10.1016/S0140-6736(16)30582-7
pubmed: 27302272
Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383(9922):1084–1094. https://doi.org/10.1016/S0140-6736(13)62219-9
doi: 10.1016/S0140-6736(13)62219-9
pubmed: 24315621
Carlsson S (2022) Lifestyle or environmental influences and their interaction with genetic susceptibility on the risk of LADA. Front Endocrinol (Lausanne) 13:1–12. https://doi.org/10.3389/fendo.2022.917850
doi: 10.3389/fendo.2022.917850
Clausen TD, Bergholt T, Bouaziz O, Arpi M, Eriksson F (2016) Broad-spectrum antibiotic treatment and subsequent childhood type 1 diabetes : a nationwide Danish cohort study. PLoS One 1–15. https://doi.org/10.1371/journal.pone.0161654
Wernroth ML, Fall K, Svennblad B et al (2020) Early childhood antibiotic treatment for otitis media and other respiratory tract infections is associated with risk of type 1 diabetes: a nationwide register-based study with sibling analysis. Diabetes Care 43(5):991–999. https://doi.org/10.2337/dc19-1162
doi: 10.2337/dc19-1162
pubmed: 32132008
pmcid: 7171951
Kilkkinen A, Virtanen SM, Klaukka T et al (2006) Use of antimicrobials and risk of type 1 diabetes in a population-based mother-child cohort. Diabetologia 49(1):66–70. https://doi.org/10.1007/s00125-005-0078-2
doi: 10.1007/s00125-005-0078-2
pubmed: 16344923
Mikkelsen KH, Knop FK, Vilsbøll T, Frost M, Hallas J, Pottegård A (2017) Use of antibiotics in childhood and risk of type 1 diabetes: a population-based case–control study. Diabet Med 34(2):272–277. https://doi.org/10.1111/dme.13262
doi: 10.1111/dme.13262
pubmed: 27646695
Hviid A, Svanström H (2009) Antibiotic use and type 1 diabetes in childhood. Am J Epidemiol 169(9):1079–1084. https://doi.org/10.1093/aje/kwp038
doi: 10.1093/aje/kwp038
pubmed: 19318617
Antvorskov JC, Morgen CS, Buschard K, Jess T, Allin KH, Josefsen K (2020) Antibiotic treatment during early childhood and risk of type 1 diabetes in children: a national birth cohort study. Pediatr Diabetes 21(8):1457–1464. https://doi.org/10.1111/pedi.13111
doi: 10.1111/pedi.13111
pubmed: 32902076
pmcid: 9291608
Davis PJ, Liu M, Alemi F et al (2019) Prior antibiotic exposure and risk of type 2 diabetes among Veterans. Prim Care Diabetes 13(1):49–56. https://doi.org/10.1016/j.pcd.2018.07.001
doi: 10.1016/j.pcd.2018.07.001
pubmed: 30025678
Mikkelsen KH, Knop FK, Frost M, Hallas J (2015) Use of antibiotics and risk of type 2 diabetes: a population-based case-control study. J Clin Endocrinol Metab 100(10):3633–3640. https://doi.org/10.1210/jc.2015-2696
doi: 10.1210/jc.2015-2696
pubmed: 26312581
pmcid: 4596043
Nuotio J, Niiranen T, Laitinen TT et al (2022) Use of antibiotics and risk of type 2 diabetes, overweight and obesity: the Cardiovascular Risk in Young Finns Study and the national FINRISK study. BMC Endocr Disord 22(1):1–10. https://doi.org/10.1186/s12902-022-01197-y
doi: 10.1186/s12902-022-01197-y
Yuan J, Hu YJ, Zheng J et al (2020) Long-term use of antibiotics and risk of type 2 diabetes in women: a prospective cohort study. Int J Epidemiol 49(5):1572–1581. https://doi.org/10.1093/ije/dyaa122
doi: 10.1093/ije/dyaa122
pubmed: 32893302
pmcid: 7746404
Rahmati K, Lernmark Å, Becker C et al (2008) A comparison of serum and EDTA plasma in the measurement of glutamic acid decarboxylase autoantibodies (GADA) and autoantibodies to islet antigen-2 (IA-2A) using the RSR radioimmunoassay (RIA) and enzyme linked immunosorbent assay (ELISA) kits. Clin Lab 54(7–8):227–235
pubmed: 18942490
Oxford Centre for Diabetes, Endocrinology and Metabolism, Diabetes Trial Unit (2013) HOMA calculator. Available from: http://www.dtu.ox.ac.uk/homacalculator/index.php . Accessed 1 Jun 2013
Krokstad S, Langhammer A, Hveem K et al (2013) Cohort profile: the HUNT study, Norway. Int J Epidemiol 42(4):968–977. https://doi.org/10.1093/ije/dys095
doi: 10.1093/ije/dys095
pubmed: 22879362
Bingley PJ, Bonifacio E, Mueller PW, Mueller PW, Participating Laboratories (2003) Diabetes Antibody Standardization Program: first assay proficiency evaluation. Diabetes 52(5):1128–1136. https://doi.org/10.2337/diabetes.52.5.1128
Wettermark B, Hammar N, Leimanis A et al (2006) The new Swedish Prescribed Drug Register — opportunities for pharmacoepidemiological research and experience from the first six months. Pharmacoepidemiol Drug Saf 16:726–735. https://doi.org/10.1002/pds
doi: 10.1002/pds
Ludvigsson JF, Andersson E, Ekbom A et al (2011) External review and validation of the Swedish National Inpatient Register. BMC Public Health 11:450. https://doi.org/10.1186/1471-2458-11-450
doi: 10.1186/1471-2458-11-450
pubmed: 21658213
pmcid: 3142234
Löfvendahl S, Schelin MEC, Jöud A (2020) The value of the skåne health-care register: prospectively collected individual-level data for population-based studies. Scand J Public Health 48(1):56–63. https://doi.org/10.1177/1403494819868042
doi: 10.1177/1403494819868042
pubmed: 31814536
Agersø Y, Bager F, Boel J (2014) DANMAP 2013: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, Copenhagen, Denmark
WHO Collaborating Centre for Drug Statistics Methodology (2023) Guidelines for ATC classification and DDD assignment 2024. WHO Collaborating Centre for Drug Statistics Methodology, Oslo, Norway
Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA (2009) High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20(4):512–522. https://doi.org/10.1097/EDE.0b013e3181a663cc
doi: 10.1097/EDE.0b013e3181a663cc
pubmed: 19487948
pmcid: 3077219
Sørgjerd EP, Skorpen F, Kvaløy K, Midthjell K, Grill V (2012) Time dynamics of autoantibodies are coupled to phenotypes and add to the heterogeneity of autoimmune diabetes in adults: the HUNT study, Norway. Diabetologia 55(5):1310–1318. https://doi.org/10.1007/s00125-012-2463-y
doi: 10.1007/s00125-012-2463-y
pubmed: 22297581
Lange K, Buerger M, Stallmach A, Bruns T (2016) Effects of antibiotics on gut microbiota. Digest Dis 34(3):260–268. https://doi.org/10.1159/000443360
doi: 10.1159/000443360
Dedrick S, Sundaresh B, Huang Q et al (2020) The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Front Endocrinol (Lausanne) 11:1–20. https://doi.org/10.3389/fendo.2020.00078
doi: 10.3389/fendo.2020.00078
Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Investig 124(10):4212–4218. https://doi.org/10.1172/JCI72333
doi: 10.1172/JCI72333
pubmed: 25271726
pmcid: 4191029
Isaacs SR, Roy A, Dance B et al (2023) Enteroviruses and risk of islet autoimmunity or type 1 diabetes: systematic review and meta-analysis of controlled observational studies detecting viral nucleic acids and proteins. Lancet Diabetes Endocrinol 11(8):578–592. https://doi.org/10.1016/S2213-8587(23)00122-5
doi: 10.1016/S2213-8587(23)00122-5
pubmed: 37390839
Edstorp J, Rossides M, Ahlqvist E, Rasouli B, Tuomi T, Carlsson S (2023) Does a prior diagnosis of infectious disease confer an increased risk of latent autoimmune diabetes in adults? Diabetes Metab Res Rev 40(3):e3758. https://doi.org/10.1002/dmrr.3758
doi: 10.1002/dmrr.3758
pubmed: 38103209
Boursi B, Mamtani R, Haynes K, Yang YX (2015) The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol 172(6):639–648. https://doi.org/10.1530/EJE-14-1163
doi: 10.1530/EJE-14-1163
pubmed: 25805893
pmcid: 4525475
Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S (2011) Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol 173(12):1404–1413. https://doi.org/10.1093/aje/kwr001
doi: 10.1093/aje/kwr001
pubmed: 21602301
pmcid: 3145392
Carey IM, Critchley JA, Chaudhry UAR et al (2023) Evaluating ethnic variations in the risk of infections in people with prediabetes and type 2 diabetes: a matched cohort study. Diabetes Care 46(6):1209–1217. https://doi.org/10.2337/dc22-2394
doi: 10.2337/dc22-2394
pubmed: 37043827
pmcid: 10234749
Ahlqvist E, Storm P, Käräjämäki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6(5):361–369. https://doi.org/10.1016/S2213-8587(18)30051-2
doi: 10.1016/S2213-8587(18)30051-2
pubmed: 29503172
Hawa MI, Kolb H, Schloot N et al (2013) Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: action LADA 7. Diabetes Care 36(4):908–913. https://doi.org/10.2337/dc12-0931
doi: 10.2337/dc12-0931
pubmed: 23248199
pmcid: 3609504