Epigenetic memory of radiotherapy in dermal fibroblasts impairs wound repair capacity in cancer survivors.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 Oct 2024
28 Oct 2024
Historique:
received:
07
08
2023
accepted:
09
10
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
epublish
Résumé
Radiotherapy (RT), a common cancer treatment, unintentionally harms surrounding tissues, including the skin, and hinders wound healing years after treatment. This study aims to understand the mechanisms behind these late-onset adverse effects. We compare skin biopsies from previously irradiated (RT
Identifiants
pubmed: 39468077
doi: 10.1038/s41467-024-53295-1
pii: 10.1038/s41467-024-53295-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9286Subventions
Organisme : Strålsäkerhetsmyndigheten (Radiation Safety Authority)
ID : Grant No. SSM2014-4016
Organisme : Gouvernement du Canada | Instituts de Recherche en Santé du Canada | Institute of Musculoskeletal Health and Arthritis (Institut de l'Appareil Locomoteur et de l'Arthrite)
ID : No. 384224/151708
Organisme : Radiumhemmets Forskningsfonder (Cancer Research Foundations of Radiumhemmet)
ID : No. 161072
Organisme : Svenska Läkaresällskapet (Swedish Society of Medicine)
ID : No. SLS-886621
Organisme : Stockholms Läns Landsting (Stockholm County Council)
ID : No. FoUI-962332
Informations de copyright
© 2024. The Author(s).
Références
Thariat, J., Hannoun-Levi, J. M., Sun Myint, A., Vuong, T. & Gerard, J. P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 10, 52–60 (2013).
pubmed: 23183635
doi: 10.1038/nrclinonc.2012.203
Stone, H. B., Coleman, C. N., Anscher, M. S. & McBride, W. H. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4, 529–536 (2003).
pubmed: 12965273
doi: 10.1016/S1470-2045(03)01191-4
Haubner, F., Ohmann, E., Pohl, F., Strutz, J. & Gassner, H. G. Wound healing after radiation therapy: review of the literature. Radiat. Oncol. 7, 162 (2012).
pubmed: 23006548
pmcid: 3504517
doi: 10.1186/1748-717X-7-162
Gieringer, M., Gosepath, J. & Naim, R. Radiotherapy and wound healing: principles, management and prospects (review). Oncol. Rep. 26, 299–307 (2011).
pubmed: 21617873
Livingston, K., Schlaak, R. A., Puckett, L. L. & Bergom, C. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside. Front Cardiovasc Med 7, 20 (2020).
pubmed: 32154269
pmcid: 7047199
doi: 10.3389/fcvm.2020.00020
Chandrasekaran, KimG. J. & Morgan, K. WF. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis 21, 361–367 (2006).
pubmed: 17065161
doi: 10.1093/mutage/gel048
Lia, K. et al. Impaired wound healing after radiation therapy: A systematic review of pathogenesis and treatment. JPRAS Open 13, 92–105 (2017).
doi: 10.1016/j.jpra.2017.04.001
Sangsuwan, T. et al. Oxidative stress levels and dna repair kinetics in senescent primary human fibroblasts exposed to chronic low dose rate of ionizing radiation. Front Biosci. (Landmark Ed.) 28, 296 (2023).
pubmed: 38062840
doi: 10.31083/j.fbl2811296
Koturbash, I. 2017 Michael fry award lecture when dna is actually not a target: radiation epigenetics as a tool to understand and control cellular response to ionizing radiation. Radiat. Res 190, 5–11 (2018).
pubmed: 29697303
pmcid: 6036898
doi: 10.1667/RR15027.1
Aypar, U., Morgan, W. F. & Baulch, J. E. Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int J. Radiat. Biol. 87, 179–191 (2011).
pubmed: 21039330
doi: 10.3109/09553002.2010.522686
Weigel, C., Schmezer, P., Plass, C. & Popanda, O. Epigenetics in radiation-induced fibrosis. Oncogene 34, 2145–2155 (2015).
pubmed: 24909163
doi: 10.1038/onc.2014.145
Netea, M. G. et al. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098 (2016).
pubmed: 27102489
pmcid: 5087274
doi: 10.1126/science.aaf1098
Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).
pubmed: 35831602
pmcid: 9302602
doi: 10.1038/s41586-022-04919-3
Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).
pubmed: 29045388
pmcid: 5808576
doi: 10.1038/nature24271
Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021).
pubmed: 34822296
pmcid: 8896201
doi: 10.1126/science.abh2444
Li, X. & Xu Landen, N. Evaluation of MicroRNA therapeutic potential using the mouse in vivo and human ex vivo wound models. Methods Mol. Biol. 2193, 67–75 (2021).
pubmed: 32808259
doi: 10.1007/978-1-0716-0845-6_7
Nasir, N. A. M., Paus, R. & Ansell, D. M. Fluorescent cell tracer dye permits real-time assessment of re-epithelialization in a serum-free ex vivo human skin wound assay. Wound Repair Regen. 27, 126–133 (2019).
pubmed: 30575205
doi: 10.1111/wrr.12688
Wilkinson, H. N., Kidd, A. S., Roberts, E. R. & Hardman, M. J. Human ex vivo wound model and whole-mount staining approach to accurately evaluate skin repair. J. Vis. Exp. 10.3791/62326 (2021).
Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care 22, 407–408 (2013). 410-412.
pubmed: 23924840
doi: 10.12968/jowc.2013.22.8.407
Rittie, L. & Fisher, G. J. Isolation and culture of skin fibroblasts. Methods Mol. Med 117, 83–98 (2005).
pubmed: 16118447
Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).
pubmed: 35478247
pmcid: 9189070
doi: 10.1038/s41596-022-00692-9
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432
pmcid: 2898526
doi: 10.1016/j.molcel.2010.05.004
Bentsen, M. et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat. Commun. 11, 4267 (2020).
pubmed: 32848148
pmcid: 7449963
doi: 10.1038/s41467-020-18035-1
Mevel, R., Draper, J. E., Lie, A. L. M., Kouskoff, V. & Lacaud, G. RUNX transcription factors: orchestrators of development. Development 146, dev148296 (2019).
pubmed: 31488508
doi: 10.1242/dev.148296
Kim, W. et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc. Natl Acad. Sci. USA 111, 16389–16394 (2014).
pubmed: 25313057
pmcid: 4246299
doi: 10.1073/pnas.1407097111
Lichtman, M. K., Otero-Vinas, M. & Falanga, V. Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis. Wound Repair Regen. 24, 215–222 (2016).
pubmed: 26704519
doi: 10.1111/wrr.12398
Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet Dev. 13, 43–47 (2003).
pubmed: 12573434
doi: 10.1016/S0959-437X(03)00007-8
Liu, Z. et al. Integrative small and long RNA omics analysis of human healing and nonhealing wounds discovers cooperating microRNAs as therapeutic targets. Elife 11, e80322 (2022).
pubmed: 35942686
pmcid: 9374442
doi: 10.7554/eLife.80322
Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e1758 (2021).
pubmed: 34320411
pmcid: 8500942
doi: 10.1016/j.stem.2021.07.001
Scherer, S. D. et al. TGF-beta1 is present at high levels in wound fluid from breast cancer patients immediately post-surgery, and is not increased by intraoperative radiation therapy (IORT). PLoS One 11, e0162221 (2016).
pubmed: 27589056
pmcid: 5010202
doi: 10.1371/journal.pone.0162221
Fournier, C., Wiese, C. & Taucher-Scholz, G. Accumulation of the cell cycle regulators TP53 and CDKN1A (p21) in human fibroblasts after exposure to low- and high-LET radiation. Radiat. Res 161, 675–684 (2004).
pubmed: 15161352
doi: 10.1667/RR3182
Torres, M., Al-Buhairi, M. & Alsbeih, G. Induction of p53 and p21 proteins by gamma radiation in skin fibroblasts derived from breast cancer patients. Int J. Radiat. Oncol. Biol. Phys. 58, 479–484 (2004).
pubmed: 14751518
doi: 10.1016/j.ijrobp.2003.09.062
Kyriakides, T. R. & Maclauchlan, S. The role of thrombospondins in wound healing, ischemia, and the foreign body reaction. J. Cell Commun. Signal 3, 215–225 (2009).
pubmed: 19844806
pmcid: 2778594
doi: 10.1007/s12079-009-0077-z
Agah, A., Kyriakides, T. R., Lawler, J. & Bornstein, P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am. J. Pathol. 161, 831–839 (2002).
pubmed: 12213711
pmcid: 1867266
doi: 10.1016/S0002-9440(10)64243-5
DiPietro, L. A. et al. Thrombospondin 1 synthesis and function in wound repair. Am. J. Pathol. 148, 1851–1860 (1996).
pubmed: 8669471
pmcid: 1861632
Streit, M. et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J. 19, 3272–3282 (2000).
pubmed: 10880440
pmcid: 313956
doi: 10.1093/emboj/19.13.3272
Joost, S. et al. Single-Cell Transcriptomics of Traced Epidermal and Hair Follicle Stem Cells Reveals Rapid Adaptations during Wound Healing. Cell Rep. 25, 585–597 e587 (2018).
pubmed: 30332640
doi: 10.1016/j.celrep.2018.09.059
Raugi, G. J., Olerud, J. E. & Gown, A. M. Thrombospondin in early human wound tissue. J. Invest Dermatol 89, 551–554 (1987).
pubmed: 3680981
doi: 10.1111/1523-1747.ep12461198
Correa-Gallegos, D. et al. CD201(+) fascia progenitors choreograph injury repair. Nature 623, 792–802 (2023).
pubmed: 37968392
pmcid: 10665192
doi: 10.1038/s41586-023-06725-x
Vu, R. et al. Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell-cell communication. Cell Rep. 40, 111155 (2022).
pubmed: 35926463
pmcid: 9901190
doi: 10.1016/j.celrep.2022.111155
Deng, C.-C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 12, 3709 (2021).
pubmed: 34140509
pmcid: 8211847
doi: 10.1038/s41467-021-24110-y
Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest Dermatol 138, 811–825 (2018).
pubmed: 29391249
pmcid: 5869055
doi: 10.1016/j.jid.2018.01.016
Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).
pubmed: 35027729
doi: 10.1038/s41587-021-01139-4
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522
pmcid: 7889871
doi: 10.1038/s41467-021-21246-9
Diaz, C. et al. Ionizing radiation mediates dose dependent effects affecting the healing kinetics of wounds created on acute and late irradiated skin. Surgeries 2, 35–57 (2021).
doi: 10.3390/surgeries2010004
Cox, J. D., Stetz, J. & Pajak, T. F. Toxicity criteria of the radiation therapy oncology group (rtog) and the european organization for research and treatment of cancer (EORTC). Int J. Radiat. Oncol. Biol. Phys. 31, 1341–1346 (1995).
pubmed: 7713792
doi: 10.1016/0360-3016(95)00060-C
Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).
pubmed: 28333914
pmcid: 5526071
doi: 10.1038/nprot.2017.016
Kirk, T., Ahmed, A. & Rognoni, E. Fibroblast Memory in Development, Homeostasis and Disease. Cells 10, 2840 (2021).
pubmed: 34831065
pmcid: 8616330
doi: 10.3390/cells10112840
Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).
pubmed: 33536616
pmcid: 8482641
doi: 10.1038/s41586-020-03147-x
Koelwyn, G. J. et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med 26, 1452–1458 (2020).
pubmed: 32661390
pmcid: 7789095
doi: 10.1038/s41591-020-0964-7
Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021).
pubmed: 34529467
pmcid: 9733946
doi: 10.1126/science.abj0486
Geller, A. E. et al. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13, 759 (2022).
pubmed: 35140221
pmcid: 8828725
doi: 10.1038/s41467-022-28407-4
Hunt, C. R. et al. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat. Res 179, 383–392 (2013).
pubmed: 23373901
pmcid: 4133051
doi: 10.1667/RR3308.2
Dabin, J., Fortuny, A. & Polo, S. E. Epigenome Maintenance in Response to DNA Damage. Mol. Cell 62, 712–727 (2016).
pubmed: 27259203
pmcid: 5476208
doi: 10.1016/j.molcel.2016.04.006
Tabib, T. et al. Myofibroblast transcriptome indicates SFRP2(hi) fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 12, 4384 (2021).
pubmed: 34282151
pmcid: 8289865
doi: 10.1038/s41467-021-24607-6
Jiang, D., Guo, B., Lin, F., Hui, Q. & Tao, K. Effect of THBS1 on the Biological Function of Hypertrophic Scar Fibroblasts. Biomed. Res Int 2020, 8605407 (2020).
pubmed: 33376743
pmcid: 7744174
doi: 10.1155/2020/8605407
Feng, Q. L. et al. TSP1 promotes fibroblast proliferation and extracellular matrix deposition via the IL6/JAK2/STAT3 signalling pathway in keloids. Exp. Dermatol 31, 1533–1542 (2022).
pubmed: 35661430
doi: 10.1111/exd.14623
Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest 125, 2795–2807 (2015).
pubmed: 26098215
pmcid: 4563675
doi: 10.1172/JCI77958
Pal, S. K. et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J. Oral. Pathol. Med 45, 730–739 (2016).
pubmed: 26850833
doi: 10.1111/jop.12430
Xiao, M., Zhang, J., Chen, W. & Chen, W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J. Exp. Clin. Cancer Res 37, 143 (2018).
pubmed: 29986759
pmcid: 6038304
doi: 10.1186/s13046-018-0815-2
Burnworth, B. et al. The multi-step process of human skin carcinogenesis: a role for p53, cyclin D1, hTERT, p16, and TSP-1. Eur. J. Cell Biol. 86, 763–780 (2007).
pubmed: 17198740
doi: 10.1016/j.ejcb.2006.11.002
Halle, M. et al. Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J. Am. Coll. Cardiol. 55, 1227–1236 (2010).
pubmed: 20298930
doi: 10.1016/j.jacc.2009.10.047
Murphy-Ullrich, J. E. & Suto, M. J. Thrombospondin-1 regulation of latent TGF-beta activation: A therapeutic target for fibrotic disease. Matrix Biol. 68-69, 28–43 (2018).
pubmed: 29288716
doi: 10.1016/j.matbio.2017.12.009
Isenberg, J. S. & Roberts, D. D. THBS1 (thrombospondin-1). Atlas Genet Cytogenet Oncol. Haematol. 24, 291–299 (2020).
pubmed: 33244322
pmcid: 7687907
Zhao, H. et al. CD47 as a promising therapeutic target in oncology. Front Immunol. 13, 757480 (2022).
pubmed: 36081498
pmcid: 9446754
doi: 10.3389/fimmu.2022.757480
Łuszczyński, K. et al. Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review. Cells 13, 1206 (2024).
pubmed: 39056788
pmcid: 11274970
doi: 10.3390/cells13141206
Iannello, G. et al. Simple, Fast, and Efficient Method for Derivation of Dermal Fibroblasts From Skin Biopsies. Curr. Protoc. 3, e714 (2023).
pubmed: 36912580
doi: 10.1002/cpz1.714
Nejaddehbashi, F. et al. Isolating human dermal fibroblasts using serial explant culture. Stem Cell Investig. 6, 23 (2019).
pubmed: 31559310
pmcid: 6737403
doi: 10.21037/sci.2019.08.05
Chang, Y., Li, H. & Guo, Z. Mesenchymal stem cell-like properties in fibroblasts. Cell Physiol. Biochem 34, 703–714 (2014).
pubmed: 25171291
doi: 10.1159/000363035
Haniffa, M. A., Collin, M. P., Buckley, C. D. & Dazzi, F. Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94, 258–263 (2009).
pubmed: 19109217
doi: 10.3324/haematol.13699
Jiang, D. & Rinkevich, Y. Defining Skin Fibroblastic Cell Types Beyond CD90. Front Cell Dev. Biol. 6, 133 (2018).
pubmed: 30406099
pmcid: 6204438
doi: 10.3389/fcell.2018.00133
Saalbach, A. & Anderegg, U. Thy-1: more than a marker for mesenchymal stromal cells. FASEB J. 33, 6689–6696 (2019).
pubmed: 30811954
doi: 10.1096/fj.201802224R
Korosec, A. et al. Lineage identity and location within the dermis determine the function of papillary and reticular fibroblasts in human skin. J. Invest Dermatol 139, 342–351 (2019).
pubmed: 30179601
doi: 10.1016/j.jid.2018.07.033
Korosec A., Frech S., Lichtenberger B. M. Isolation of papillary and reticular fibroblasts from human skin by fluorescence-activated cell sorting. J. Vis. Exp. (2019).
Ejaz, A., Epperly, M. W., Hou, W., Greenberger, J. S. & Rubin, J. P. Adipose-derived stem cell therapy ameliorates ionizing irradiation fibrosis via hepatocyte growth factor-mediated transforming growth factor-beta downregulation and recruitment of bone marrow cells. Stem Cells 37, 791–802 (2019).
pubmed: 30861238
doi: 10.1002/stem.3000
Xiao, Z. et al. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis. Int J. Radiat. Oncol. Biol. Phys. 65, 882–889 (2006).
pubmed: 16751070
doi: 10.1016/j.ijrobp.2006.01.031
Keyes, B. E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167, 1323–1338 e1314 (2016).
pubmed: 27863246
pmcid: 5364946
doi: 10.1016/j.cell.2016.10.052
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21 29 21–21 29 29 (2015).
doi: 10.1002/0471142727.mb2129s109
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095
pmcid: 3346182
doi: 10.1038/nbt.1754
Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42, W187–W191 (2014).
pubmed: 24799436
pmcid: 4086134
doi: 10.1093/nar/gku365
Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).
pubmed: 22936215
doi: 10.1038/nprot.2012.101
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347
doi: 10.1093/bioinformatics/btv145
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313
doi: 10.1038/s41467-019-09234-6
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
pubmed: 31375807
pmcid: 7605509
doi: 10.1038/s41587-019-0201-4
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst. 8, 281–291 e289 (2019).
pubmed: 30954476
pmcid: 6625319
doi: 10.1016/j.cels.2018.11.005
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e324 (2019).
pubmed: 30954475
pmcid: 6853612
doi: 10.1016/j.cels.2019.03.003
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).
pubmed: 34725479
pmcid: 9255697
doi: 10.1038/s41592-021-01282-5
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. PMC10928517 (2023).
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137