Epigenetic memory of radiotherapy in dermal fibroblasts impairs wound repair capacity in cancer survivors.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 Oct 2024
Historique:
received: 07 08 2023
accepted: 09 10 2024
medline: 29 10 2024
pubmed: 29 10 2024
entrez: 29 10 2024
Statut: epublish

Résumé

Radiotherapy (RT), a common cancer treatment, unintentionally harms surrounding tissues, including the skin, and hinders wound healing years after treatment. This study aims to understand the mechanisms behind these late-onset adverse effects. We compare skin biopsies from previously irradiated (RT

Identifiants

pubmed: 39468077
doi: 10.1038/s41467-024-53295-1
pii: 10.1038/s41467-024-53295-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9286

Subventions

Organisme : Strålsäkerhetsmyndigheten (Radiation Safety Authority)
ID : Grant No. SSM2014-4016
Organisme : Gouvernement du Canada | Instituts de Recherche en Santé du Canada | Institute of Musculoskeletal Health and Arthritis (Institut de l'Appareil Locomoteur et de l'Arthrite)
ID : No. 384224/151708
Organisme : Radiumhemmets Forskningsfonder (Cancer Research Foundations of Radiumhemmet)
ID : No. 161072
Organisme : Svenska Läkaresällskapet (Swedish Society of Medicine)
ID : No. SLS-886621
Organisme : Stockholms Läns Landsting (Stockholm County Council)
ID : No. FoUI-962332

Informations de copyright

© 2024. The Author(s).

Références

Thariat, J., Hannoun-Levi, J. M., Sun Myint, A., Vuong, T. & Gerard, J. P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 10, 52–60 (2013).
pubmed: 23183635 doi: 10.1038/nrclinonc.2012.203
Stone, H. B., Coleman, C. N., Anscher, M. S. & McBride, W. H. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4, 529–536 (2003).
pubmed: 12965273 doi: 10.1016/S1470-2045(03)01191-4
Haubner, F., Ohmann, E., Pohl, F., Strutz, J. & Gassner, H. G. Wound healing after radiation therapy: review of the literature. Radiat. Oncol. 7, 162 (2012).
pubmed: 23006548 pmcid: 3504517 doi: 10.1186/1748-717X-7-162
Gieringer, M., Gosepath, J. & Naim, R. Radiotherapy and wound healing: principles, management and prospects (review). Oncol. Rep. 26, 299–307 (2011).
pubmed: 21617873
Livingston, K., Schlaak, R. A., Puckett, L. L. & Bergom, C. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside. Front Cardiovasc Med 7, 20 (2020).
pubmed: 32154269 pmcid: 7047199 doi: 10.3389/fcvm.2020.00020
Chandrasekaran, KimG. J. & Morgan, K. WF. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis 21, 361–367 (2006).
pubmed: 17065161 doi: 10.1093/mutage/gel048
Lia, K. et al. Impaired wound healing after radiation therapy: A systematic review of pathogenesis and treatment. JPRAS Open 13, 92–105 (2017).
doi: 10.1016/j.jpra.2017.04.001
Sangsuwan, T. et al. Oxidative stress levels and dna repair kinetics in senescent primary human fibroblasts exposed to chronic low dose rate of ionizing radiation. Front Biosci. (Landmark Ed.) 28, 296 (2023).
pubmed: 38062840 doi: 10.31083/j.fbl2811296
Koturbash, I. 2017 Michael fry award lecture when dna is actually not a target: radiation epigenetics as a tool to understand and control cellular response to ionizing radiation. Radiat. Res 190, 5–11 (2018).
pubmed: 29697303 pmcid: 6036898 doi: 10.1667/RR15027.1
Aypar, U., Morgan, W. F. & Baulch, J. E. Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int J. Radiat. Biol. 87, 179–191 (2011).
pubmed: 21039330 doi: 10.3109/09553002.2010.522686
Weigel, C., Schmezer, P., Plass, C. & Popanda, O. Epigenetics in radiation-induced fibrosis. Oncogene 34, 2145–2155 (2015).
pubmed: 24909163 doi: 10.1038/onc.2014.145
Netea, M. G. et al. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098 (2016).
pubmed: 27102489 pmcid: 5087274 doi: 10.1126/science.aaf1098
Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).
pubmed: 35831602 pmcid: 9302602 doi: 10.1038/s41586-022-04919-3
Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).
pubmed: 29045388 pmcid: 5808576 doi: 10.1038/nature24271
Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021).
pubmed: 34822296 pmcid: 8896201 doi: 10.1126/science.abh2444
Li, X. & Xu Landen, N. Evaluation of MicroRNA therapeutic potential using the mouse in vivo and human ex vivo wound models. Methods Mol. Biol. 2193, 67–75 (2021).
pubmed: 32808259 doi: 10.1007/978-1-0716-0845-6_7
Nasir, N. A. M., Paus, R. & Ansell, D. M. Fluorescent cell tracer dye permits real-time assessment of re-epithelialization in a serum-free ex vivo human skin wound assay. Wound Repair Regen. 27, 126–133 (2019).
pubmed: 30575205 doi: 10.1111/wrr.12688
Wilkinson, H. N., Kidd, A. S., Roberts, E. R. & Hardman, M. J. Human ex vivo wound model and whole-mount staining approach to accurately evaluate skin repair. J. Vis. Exp. 10.3791/62326 (2021).
Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care 22, 407–408 (2013). 410-412.
pubmed: 23924840 doi: 10.12968/jowc.2013.22.8.407
Rittie, L. & Fisher, G. J. Isolation and culture of skin fibroblasts. Methods Mol. Med 117, 83–98 (2005).
pubmed: 16118447
Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).
pubmed: 35478247 pmcid: 9189070 doi: 10.1038/s41596-022-00692-9
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Bentsen, M. et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat. Commun. 11, 4267 (2020).
pubmed: 32848148 pmcid: 7449963 doi: 10.1038/s41467-020-18035-1
Mevel, R., Draper, J. E., Lie, A. L. M., Kouskoff, V. & Lacaud, G. RUNX transcription factors: orchestrators of development. Development 146, dev148296 (2019).
pubmed: 31488508 doi: 10.1242/dev.148296
Kim, W. et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc. Natl Acad. Sci. USA 111, 16389–16394 (2014).
pubmed: 25313057 pmcid: 4246299 doi: 10.1073/pnas.1407097111
Lichtman, M. K., Otero-Vinas, M. & Falanga, V. Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis. Wound Repair Regen. 24, 215–222 (2016).
pubmed: 26704519 doi: 10.1111/wrr.12398
Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet Dev. 13, 43–47 (2003).
pubmed: 12573434 doi: 10.1016/S0959-437X(03)00007-8
Liu, Z. et al. Integrative small and long RNA omics analysis of human healing and nonhealing wounds discovers cooperating microRNAs as therapeutic targets. Elife 11, e80322 (2022).
pubmed: 35942686 pmcid: 9374442 doi: 10.7554/eLife.80322
Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e1758 (2021).
pubmed: 34320411 pmcid: 8500942 doi: 10.1016/j.stem.2021.07.001
Scherer, S. D. et al. TGF-beta1 is present at high levels in wound fluid from breast cancer patients immediately post-surgery, and is not increased by intraoperative radiation therapy (IORT). PLoS One 11, e0162221 (2016).
pubmed: 27589056 pmcid: 5010202 doi: 10.1371/journal.pone.0162221
Fournier, C., Wiese, C. & Taucher-Scholz, G. Accumulation of the cell cycle regulators TP53 and CDKN1A (p21) in human fibroblasts after exposure to low- and high-LET radiation. Radiat. Res 161, 675–684 (2004).
pubmed: 15161352 doi: 10.1667/RR3182
Torres, M., Al-Buhairi, M. & Alsbeih, G. Induction of p53 and p21 proteins by gamma radiation in skin fibroblasts derived from breast cancer patients. Int J. Radiat. Oncol. Biol. Phys. 58, 479–484 (2004).
pubmed: 14751518 doi: 10.1016/j.ijrobp.2003.09.062
Kyriakides, T. R. & Maclauchlan, S. The role of thrombospondins in wound healing, ischemia, and the foreign body reaction. J. Cell Commun. Signal 3, 215–225 (2009).
pubmed: 19844806 pmcid: 2778594 doi: 10.1007/s12079-009-0077-z
Agah, A., Kyriakides, T. R., Lawler, J. & Bornstein, P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am. J. Pathol. 161, 831–839 (2002).
pubmed: 12213711 pmcid: 1867266 doi: 10.1016/S0002-9440(10)64243-5
DiPietro, L. A. et al. Thrombospondin 1 synthesis and function in wound repair. Am. J. Pathol. 148, 1851–1860 (1996).
pubmed: 8669471 pmcid: 1861632
Streit, M. et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J. 19, 3272–3282 (2000).
pubmed: 10880440 pmcid: 313956 doi: 10.1093/emboj/19.13.3272
Joost, S. et al. Single-Cell Transcriptomics of Traced Epidermal and Hair Follicle Stem Cells Reveals Rapid Adaptations during Wound Healing. Cell Rep. 25, 585–597 e587 (2018).
pubmed: 30332640 doi: 10.1016/j.celrep.2018.09.059
Raugi, G. J., Olerud, J. E. & Gown, A. M. Thrombospondin in early human wound tissue. J. Invest Dermatol 89, 551–554 (1987).
pubmed: 3680981 doi: 10.1111/1523-1747.ep12461198
Correa-Gallegos, D. et al. CD201(+) fascia progenitors choreograph injury repair. Nature 623, 792–802 (2023).
pubmed: 37968392 pmcid: 10665192 doi: 10.1038/s41586-023-06725-x
Vu, R. et al. Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell-cell communication. Cell Rep. 40, 111155 (2022).
pubmed: 35926463 pmcid: 9901190 doi: 10.1016/j.celrep.2022.111155
Deng, C.-C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 12, 3709 (2021).
pubmed: 34140509 pmcid: 8211847 doi: 10.1038/s41467-021-24110-y
Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest Dermatol 138, 811–825 (2018).
pubmed: 29391249 pmcid: 5869055 doi: 10.1016/j.jid.2018.01.016
Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).
pubmed: 35027729 doi: 10.1038/s41587-021-01139-4
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522 pmcid: 7889871 doi: 10.1038/s41467-021-21246-9
Diaz, C. et al. Ionizing radiation mediates dose dependent effects affecting the healing kinetics of wounds created on acute and late irradiated skin. Surgeries 2, 35–57 (2021).
doi: 10.3390/surgeries2010004
Cox, J. D., Stetz, J. & Pajak, T. F. Toxicity criteria of the radiation therapy oncology group (rtog) and the european organization for research and treatment of cancer (EORTC). Int J. Radiat. Oncol. Biol. Phys. 31, 1341–1346 (1995).
pubmed: 7713792 doi: 10.1016/0360-3016(95)00060-C
Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).
pubmed: 28333914 pmcid: 5526071 doi: 10.1038/nprot.2017.016
Kirk, T., Ahmed, A. & Rognoni, E. Fibroblast Memory in Development, Homeostasis and Disease. Cells 10, 2840 (2021).
pubmed: 34831065 pmcid: 8616330 doi: 10.3390/cells10112840
Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).
pubmed: 33536616 pmcid: 8482641 doi: 10.1038/s41586-020-03147-x
Koelwyn, G. J. et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med 26, 1452–1458 (2020).
pubmed: 32661390 pmcid: 7789095 doi: 10.1038/s41591-020-0964-7
Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021).
pubmed: 34529467 pmcid: 9733946 doi: 10.1126/science.abj0486
Geller, A. E. et al. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13, 759 (2022).
pubmed: 35140221 pmcid: 8828725 doi: 10.1038/s41467-022-28407-4
Hunt, C. R. et al. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat. Res 179, 383–392 (2013).
pubmed: 23373901 pmcid: 4133051 doi: 10.1667/RR3308.2
Dabin, J., Fortuny, A. & Polo, S. E. Epigenome Maintenance in Response to DNA Damage. Mol. Cell 62, 712–727 (2016).
pubmed: 27259203 pmcid: 5476208 doi: 10.1016/j.molcel.2016.04.006
Tabib, T. et al. Myofibroblast transcriptome indicates SFRP2(hi) fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 12, 4384 (2021).
pubmed: 34282151 pmcid: 8289865 doi: 10.1038/s41467-021-24607-6
Jiang, D., Guo, B., Lin, F., Hui, Q. & Tao, K. Effect of THBS1 on the Biological Function of Hypertrophic Scar Fibroblasts. Biomed. Res Int 2020, 8605407 (2020).
pubmed: 33376743 pmcid: 7744174 doi: 10.1155/2020/8605407
Feng, Q. L. et al. TSP1 promotes fibroblast proliferation and extracellular matrix deposition via the IL6/JAK2/STAT3 signalling pathway in keloids. Exp. Dermatol 31, 1533–1542 (2022).
pubmed: 35661430 doi: 10.1111/exd.14623
Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest 125, 2795–2807 (2015).
pubmed: 26098215 pmcid: 4563675 doi: 10.1172/JCI77958
Pal, S. K. et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J. Oral. Pathol. Med 45, 730–739 (2016).
pubmed: 26850833 doi: 10.1111/jop.12430
Xiao, M., Zhang, J., Chen, W. & Chen, W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J. Exp. Clin. Cancer Res 37, 143 (2018).
pubmed: 29986759 pmcid: 6038304 doi: 10.1186/s13046-018-0815-2
Burnworth, B. et al. The multi-step process of human skin carcinogenesis: a role for p53, cyclin D1, hTERT, p16, and TSP-1. Eur. J. Cell Biol. 86, 763–780 (2007).
pubmed: 17198740 doi: 10.1016/j.ejcb.2006.11.002
Halle, M. et al. Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J. Am. Coll. Cardiol. 55, 1227–1236 (2010).
pubmed: 20298930 doi: 10.1016/j.jacc.2009.10.047
Murphy-Ullrich, J. E. & Suto, M. J. Thrombospondin-1 regulation of latent TGF-beta activation: A therapeutic target for fibrotic disease. Matrix Biol. 68-69, 28–43 (2018).
pubmed: 29288716 doi: 10.1016/j.matbio.2017.12.009
Isenberg, J. S. & Roberts, D. D. THBS1 (thrombospondin-1). Atlas Genet Cytogenet Oncol. Haematol. 24, 291–299 (2020).
pubmed: 33244322 pmcid: 7687907
Zhao, H. et al. CD47 as a promising therapeutic target in oncology. Front Immunol. 13, 757480 (2022).
pubmed: 36081498 pmcid: 9446754 doi: 10.3389/fimmu.2022.757480
Łuszczyński, K. et al. Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review. Cells 13, 1206 (2024).
pubmed: 39056788 pmcid: 11274970 doi: 10.3390/cells13141206
Iannello, G. et al. Simple, Fast, and Efficient Method for Derivation of Dermal Fibroblasts From Skin Biopsies. Curr. Protoc. 3, e714 (2023).
pubmed: 36912580 doi: 10.1002/cpz1.714
Nejaddehbashi, F. et al. Isolating human dermal fibroblasts using serial explant culture. Stem Cell Investig. 6, 23 (2019).
pubmed: 31559310 pmcid: 6737403 doi: 10.21037/sci.2019.08.05
Chang, Y., Li, H. & Guo, Z. Mesenchymal stem cell-like properties in fibroblasts. Cell Physiol. Biochem 34, 703–714 (2014).
pubmed: 25171291 doi: 10.1159/000363035
Haniffa, M. A., Collin, M. P., Buckley, C. D. & Dazzi, F. Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94, 258–263 (2009).
pubmed: 19109217 doi: 10.3324/haematol.13699
Jiang, D. & Rinkevich, Y. Defining Skin Fibroblastic Cell Types Beyond CD90. Front Cell Dev. Biol. 6, 133 (2018).
pubmed: 30406099 pmcid: 6204438 doi: 10.3389/fcell.2018.00133
Saalbach, A. & Anderegg, U. Thy-1: more than a marker for mesenchymal stromal cells. FASEB J. 33, 6689–6696 (2019).
pubmed: 30811954 doi: 10.1096/fj.201802224R
Korosec, A. et al. Lineage identity and location within the dermis determine the function of papillary and reticular fibroblasts in human skin. J. Invest Dermatol 139, 342–351 (2019).
pubmed: 30179601 doi: 10.1016/j.jid.2018.07.033
Korosec A., Frech S., Lichtenberger B. M. Isolation of papillary and reticular fibroblasts from human skin by fluorescence-activated cell sorting. J. Vis. Exp. (2019).
Ejaz, A., Epperly, M. W., Hou, W., Greenberger, J. S. & Rubin, J. P. Adipose-derived stem cell therapy ameliorates ionizing irradiation fibrosis via hepatocyte growth factor-mediated transforming growth factor-beta downregulation and recruitment of bone marrow cells. Stem Cells 37, 791–802 (2019).
pubmed: 30861238 doi: 10.1002/stem.3000
Xiao, Z. et al. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis. Int J. Radiat. Oncol. Biol. Phys. 65, 882–889 (2006).
pubmed: 16751070 doi: 10.1016/j.ijrobp.2006.01.031
Keyes, B. E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167, 1323–1338 e1314 (2016).
pubmed: 27863246 pmcid: 5364946 doi: 10.1016/j.cell.2016.10.052
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21 29 21–21 29 29 (2015).
doi: 10.1002/0471142727.mb2129s109
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754
Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42, W187–W191 (2014).
pubmed: 24799436 pmcid: 4086134 doi: 10.1093/nar/gku365
Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).
pubmed: 22936215 doi: 10.1038/nprot.2012.101
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347 doi: 10.1093/bioinformatics/btv145
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313 doi: 10.1038/s41467-019-09234-6
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
pubmed: 31375807 pmcid: 7605509 doi: 10.1038/s41587-019-0201-4
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst. 8, 281–291 e289 (2019).
pubmed: 30954476 pmcid: 6625319 doi: 10.1016/j.cels.2018.11.005
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e324 (2019).
pubmed: 30954475 pmcid: 6853612 doi: 10.1016/j.cels.2019.03.003
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).
pubmed: 34725479 pmcid: 9255697 doi: 10.1038/s41592-021-01282-5
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. PMC10928517 (2023).
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137

Auteurs

Xiaowei Bian (X)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Minna Piipponen (M)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Zhuang Liu (Z)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Lihua Luo (L)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Jennifer Geara (J)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Yongjian Chen (Y)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Traimate Sangsuwan (T)

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.

Monica Maselli (M)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Candice Diaz (C)

Centre de recherche en organogénèse expérimentale de l'Université Laval / LOEX, Québec, QC, Canada.
Division of Regenerative Medicine, CHU de Québec-Université Laval Research Centre, Québec, QC, Canada.

Connor A Bain (CA)

Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Evelien Eenjes (E)

Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.

Maria Genander (M)

Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.

Michael Crichton (M)

Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Jenna L Cash (JL)

Centre for Inflammation Research, Institute for Regeneration and Repair, 4-5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK.

Louis Archambault (L)

Department of Physics, Université Laval/Centre de Recherche sur le Cancer, Université Laval/Centre de recherche du CHU de Québec, Québec, QC, Canada.

Siamak Haghdoost (S)

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
ABTE/ToxEMAC laboratory, University of Caen Normandy, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France.

Julie Fradette (J)

Centre de recherche en organogénèse expérimentale de l'Université Laval / LOEX, Québec, QC, Canada.
Division of Regenerative Medicine, CHU de Québec-Université Laval Research Centre, Québec, QC, Canada.
Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada.

Pehr Sommar (P)

Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden.
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Martin Halle (M)

Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden. martin.halle@regionstockholm.se.
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. martin.halle@regionstockholm.se.

Ning Xu Landén (N)

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. ning.xu@ki.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH