In-silico and in-vitro study of novel antimicrobial peptide AM1 from Aegle marmelos against drug-resistant Staphylococcus aureus.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 10 2024
Historique:
received: 05 06 2024
accepted: 15 10 2024
medline: 29 10 2024
pubmed: 29 10 2024
entrez: 29 10 2024
Statut: epublish

Résumé

Antimicrobial peptides have garnered increasing attention as potential alternatives due to their broad-spectrum antimicrobial activity and low propensity for developing resistance. This is for the first time; proteome sequences of Aegle marmelos were subjected to in-silico digestion and AMP prediction were performed using DBAASP server. After screening the peptides on the basis of different physiochemical property, peptide sequence GKEAATKAIKEWGQPKSKITH (AM1) shows the maximum binding affinity with - 10.2 Kcal/mol in comparison with the standard drug (Trimethoprim) with - 7.4 kcal/mol and - 6.8 Kcal/mol for DHFR and SaTrmK enzyme respectively. Molecular dynamics simulation performed for 300ns, it has been found that peptide was able to stabilize the protein more effectively, analysed by RMSD, RMSF, and other statistical analysis. Free binding energy for DHFR and SaTrmK interaction from MMPBSA analysis with peptide was found to be -47.69 and - 44.32 Kcal/mol and for Trimethoprim to be -13.85 Kcal/mol and - 11.67 Kcal/mol respectively. Further in-vitro study was performed against Methicillin Susceptible Staphylococcus aureus (MSSA), Methicillin Resistant Staphylococcus aureus (MRSA), Multi-Drug Resistant Staphylococcus aureus (MDR-SA) strain, where MIC values found to be 2, 4, and 8.5 µg/ml lesser in comparison to trimethoprim which has higher MIC values 2.5, 5, and 9.5 µg/ml respectively. Thus, our study provides the insight for the further in-vivo study of the peptides against multi-drug resistant S. aureus.

Identifiants

pubmed: 39468175
doi: 10.1038/s41598-024-76553-0
pii: 10.1038/s41598-024-76553-0
doi:

Substances chimiques

Antimicrobial Peptides 0
Anti-Bacterial Agents 0
Tetrahydrofolate Dehydrogenase EC 1.5.1.3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25822

Informations de copyright

© 2024. The Author(s).

Références

Tenover, F. C. & Goering, R. V. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J. Antimicrob. Chemother. 64, 441–446 (2009).
pubmed: 19608582 doi: 10.1093/jac/dkp241
David, M. Z. & Daum, R. S. Treatment of Staphylococcus aureus infections. Curr. Top. Microbiol. Immunol. 409, 325–383 (2017).
pubmed: 28900682
Tavares, A. et al. Insights into Alpha-Hemolysin (hla) evolution and expression among Staphylococcus aureus clones with Hospital and Community Origin. PLOS ONE. 9, e98634–e98634 (2014).
pubmed: 25033196 pmcid: 4102472 doi: 10.1371/journal.pone.0098634
Udo, E. E. & Al-Sweih, N. Dominance of community-associated methicillin-resistant Staphylococcus aureus clones in a maternity hospital. PLOS ONE. 12, e0179563 (2017).
pubmed: 28640870 pmcid: 5480892 doi: 10.1371/journal.pone.0179563
Ng, M. et al. Induction of MRSA Biofilm by Low-Dose β-Lactam Antibiotics: Specificity, Prevalence and Dose-Response Effects. Dose-Response 12, dose-response.1 (2013).
Moravej, H. et al. Antimicrobial peptides: features, Action, and their resistance mechanisms in Bacteria. Microb. Drug Resist. (Larchmont N Y). 24, 747–767 (2018).
doi: 10.1089/mdr.2017.0392
Guryanova, S. V. & Ovchinnikova, T. V. Immunomodulatory and Allergenic properties of antimicrobial peptides. Int. J. Mol. Sci. 23, 2499 (2022).
pubmed: 35269641 pmcid: 8910669 doi: 10.3390/ijms23052499
Li, X., Zuo, S., Wang, B., Zhang, K. & Wang, Y. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules. 27, 2675 (2022).
pubmed: 35566025 pmcid: 9104849 doi: 10.3390/molecules27092675
Sharma, N. et al. Aegle marmelos (L.) Coaneunderutilizedifruit FruithighhnutraceuticaluvaluesVaaureviewReview. Int. J. Mol. Sci. 23, 10889 (2022).
pubmed: 36142805 pmcid: 9504793 doi: 10.3390/ijms231810889
Baliga, M. S., Thilakchand, K. R., Rai, M. P., Rao, S. & Venkatesh, P. Aegle marmelos (L.) Correa (Baelitsnphytochemicalsmicals itreatmentatment and Prevention of Cancer. Integr. Cancer Ther. 12, 187–196 (2012).
pubmed: 23089553 doi: 10.1177/1534735412451320
Gasteiger, E. et al. Protein Identification and Analysis Tools on the ExPASy server. Proteom. Protocols Handb. 571–607. https://doi.org/10.1385/1-59259-890-0:571 (2005).
Pirtskhalava, M. et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49, D288–D297 (2020).
pmcid: 7778994 doi: 10.1093/nar/gkaa991
Wang, G., Li, X. & Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2015).
pubmed: 26602694 pmcid: 4702905 doi: 10.1093/nar/gkv1278
Wei, L., Ye, X., Sakurai, T., Mu, Z. & Wei, L. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics. 38, 1514–1524 (2022).
pubmed: 34999757 doi: 10.1093/bioinformatics/btac006
Xiong, G. et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 49, W5–W14 (2021).
pubmed: 33893803 pmcid: 8262709 doi: 10.1093/nar/gkab255
Gautam, A. et al. In silico approaches for designing highly effective cell penetrating peptides. J. Translational Med. 11 (2013). https://doi.org/10.1186/1479-5876-11-74
Gautam, A., Chaudhary, K., Kumar, R. & Raghava, G. P. S. Computer-aided virtual screening and Designing of cell-penetrating peptides. Methods Mol. Biol. 1324, 59–69 (2015).
pubmed: 26202262 doi: 10.1007/978-1-4939-2806-4_4
Chaudhary, K. et al. A web server and Mobile App for Computing hemolytic potency of peptides. Sci. Rep. 6, (2016). https://doi.org/10.1038/srep22843
Gupta, S. et al. Silico Approach for Predicting toxicity of peptides and proteins. PLoS ONE. 8, e73957 (2013).
pubmed: 24058508 pmcid: 3772798 doi: 10.1371/journal.pone.0073957
Gupta, S. et al. Peptide toxicity prediction. Methods Mol. Biol. 1268, 143–157 (2014).
doi: 10.1007/978-1-4939-2285-7_7
Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 20, (2014). https://doi.org/10.1007/s00894-014-2278-5
Pintado-Grima, C., Iglesias, V., Santos, J., Uversky, V. N. & Ventura, S. DispHScan: a Multi-sequence web Tool for Predicting protein disorder as a function of pH. Biomolecules. 11, 1596 (2021).
pubmed: 34827596 pmcid: 8616002 doi: 10.3390/biom11111596
Hashemi, Z. S. et al. In silico approaches for the design and optimization of interfering peptides against protein-protein interactions. Front. Mol. Biosci. 8, 669431 (2021).
pubmed: 33996914 pmcid: 8113820 doi: 10.3389/fmolb.2021.669431
Shen, Y., Maupetit, J., Derreumaux, P. & Tufféry, P. Improved PEP-FOLD Approach for peptide and Miniprotein structure prediction. J. Chem. Theory Comput. 10, 4745–4758 (2014).
pubmed: 26588162 doi: 10.1021/ct500592m
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
doi: 10.1107/S0021889892009944
Honorato, R. V. et al. Structural Biology in the clouds: the WeNMR-EOSC ecosystem. Front. Mol. Biosci. 8, (2021). https://doi.org/10.3389/fmolb.2021.729513
van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of Biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).
pubmed: 26410586 doi: 10.1016/j.jmb.2015.09.014
Vangone, A. & Bonvin, A. P. R. O. D. I. G. Y. A contact-based predictor of binding Affinity in protein-protein complexes. BIO-PROTOCOL 7, (2017). https://doi.org/10.21769/BioProtoc.2124
Bowers, K. J. et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity clusters. IEEE Xplore. 43–43. https://doi.org/10.1109/SC.2006.54 (2006). https://ieeexplore.ieee.org/document/4090217
Ertl, P., Rohde, B. & Selzer, P. Fast calculation of Molecular Polar Surface Area as a Sum of Fragment-based contributions and its application to the prediction of Drug Transport properties. J. Med. Chem. 43, 3714–3717 (2000).
pubmed: 11020286 doi: 10.1021/jm000942e
Ruan, Z. et al. Synergistic effects from Combination of Cryptotanshinone and Fosfomycin Against Fosfomycin-Susceptible and Fosfomycin-Resistant Staphylococcus aureus. Infect. Drug Resist. Volume. 13, 2837–2844 (2020).
doi: 10.2147/IDR.S255296
Wang, L. et al. Antimicrobial peptide JH-3 effectively kills Salmonella enterica Serovar Typhimurium strain CVCC541 and reduces its pathogenicity in mice. Probiotics Antimicrob. Proteins. 11, 1379–1390 (2019).
pubmed: 31001786 doi: 10.1007/s12602-019-09533-w
Zhu, C. et al. The Antimicrobial peptide MPX can kill Staphylococcus aureus, reduce biofilm formation, and effectively treat bacterial skin infections in mice. Front. Veterinary Sci. 9, (2022).https://doi.org/10.3389/fvets.2022.819921.
Cp, M. & Fleming Kg. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 108, 10174–10177 (2011).
doi: 10.1073/pnas.1103979108
Keil, B. Specificity of Proteolysis (Springer Berlin, Heidelberg,, 1992). https://doi.org/10.1007/978-3-642-48380-6
Boman, H. G. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254, 197–215 (2003).
pubmed: 12930229 doi: 10.1046/j.1365-2796.2003.01228.x
Okella, H. et al. ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Front. Mol. Biosci. 9, 1039286 (2022).
pubmed: 36567944 pmcid: 9772024 doi: 10.3389/fmolb.2022.1039286
Tsuzuki, S., Yu, J., Matsunaga, N. & Ohmagari, N. Length of stay, hospitalisation costs and in-hospital mortality of methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia in Japan. Public. Health. 198, 292–296 (2021).
pubmed: 34507134 doi: 10.1016/j.puhe.2021.07.046
Jia, M. et al. Antibacterial effect of S-Porphin sodium photodynamic therapy on Staphylococcus aureus and multiple drug resistance Staphylococcus aureus. Photodiagn. Photodyn. Ther. 28, 80–87 (2019).
doi: 10.1016/j.pdpdt.2019.08.031
Li, C. et al. Antibacterial activity of AI-Hemocidin 2, a novel N-Terminal peptide of Hemoglobin purified from Arca inflata. Mar. Drugs. 15, 205 (2017).
pubmed: 28661457 pmcid: 5532647 doi: 10.3390/md15070205
Pei, Z. et al. Biological characteristics of a new antibacterial peptide and its antibacterial mechanisms against Gram-negative bacteria. Pol. J. Vet. Sci. 21, 533–542 (2018).
pubmed: 30468326
Kobbi, S. et al. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. Microb. Pathog. 115, 41–49 (2018).
pubmed: 29221796 doi: 10.1016/j.micpath.2017.12.009
Kang, H. K., Seo, C. H., Luchian, T. & Park, Y. Pse-T2, an Antimicrobial peptide with High-Level, Broad-Spectrum Antimicrobial Potency and skin biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa infection. Antimicrob. Agents Chemother. 62, (2018). https://doi.org/10.1128/aac.01493-18
Singh, G. et al. Identification of natural DHFR inhibitors in MRSA strains: structure-based drug design study. Results Chem. 4, 100292 (2022).
doi: 10.1016/j.rechem.2022.100292
Heaslet, H. et al. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins Struct. Funct. Bioinform. 76, 706–717 (2009).
doi: 10.1002/prot.22383
Dinari, M., Gharahi, F. & Asadi, P. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J. Mol. Struct. 1156, 43–50 (2018).
doi: 10.1016/j.molstruc.2017.11.087
Sweeney, P. et al. Structure, dynamics, and molecular inhibition of the Staphylococcus aureus m1A22-tRNA methyltransferase TrmK. J. Biol. Chem. 298, 102040 (2022).
pubmed: 35595101 pmcid: 9190014 doi: 10.1016/j.jbc.2022.102040
Yuan, Y. G., Peng, Q. L. & Gurunathan, S. Effects of Silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-infected goats: an Alternative Approach for Antimicrobial Therapy. Int. J. Mol. Sci. 18, 569 (2017).
pubmed: 28272303 pmcid: 5372585 doi: 10.3390/ijms18030569
Wang, S. et al. Use of the Antimicrobial peptide sublancin with combined antibacterial and immunomodulatory activities to protect against Methicillin-resistant Staphylococcus aureus infection in mice. J. Agric. Food Chem. 65, 8595–8605 (2017).
pubmed: 28906115 doi: 10.1021/acs.jafc.7b02592
Randhawa, H. K. et al. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus. Appl. Microbiol. Biotechnol. 100, 4073–4083 (2016).
pubmed: 26837216 doi: 10.1007/s00253-016-7329-7
Paul, P. et al. 1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Arch. Microbiol. 203, 1183–1193 (2020).
pubmed: 33230594 doi: 10.1007/s00203-020-02117-1
Deng, Q. et al. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces. Food Res. Int. 102, 8–13 (2017).
pubmed: 29196015 doi: 10.1016/j.foodres.2017.09.057
de Aguiar, F. L. L. et al. Antibiofilm Activity on Candida albicans and mechanism of action on Biomembrane models of the Antimicrobial peptide Ctn[15–34]. Int. J. Mol. Sci. 21, 8339 (2020).
pubmed: 33172206 pmcid: 7664368 doi: 10.3390/ijms21218339
Yang, Y. et al. A novel hydroxyapatite-binding antimicrobial peptide against oral biofilms. Clin. Oral Invest. 23, 2705–2712 (2018).
doi: 10.1007/s00784-018-2701-x

Auteurs

Rudra Awdhesh Kumar Mishra (R)

School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.

Gothandam Kodiveri Muthukaliannan (G)

School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India. gothandam@gmail.com.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Classifications MeSH