In-silico and in-vitro study of novel antimicrobial peptide AM1 from Aegle marmelos against drug-resistant Staphylococcus aureus.
Methicillin-Resistant Staphylococcus aureus
/ drug effects
Aegle
/ chemistry
Microbial Sensitivity Tests
Molecular Dynamics Simulation
Antimicrobial Peptides
/ pharmacology
Anti-Bacterial Agents
/ pharmacology
Tetrahydrofolate Dehydrogenase
/ metabolism
Computer Simulation
Amino Acid Sequence
Animals
Aegle marmelos
Antimicrobial peptides
DBAASP server
Drug-resistant Staphylococcus aureus
MMPBSA
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 10 2024
28 10 2024
Historique:
received:
05
06
2024
accepted:
15
10
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
epublish
Résumé
Antimicrobial peptides have garnered increasing attention as potential alternatives due to their broad-spectrum antimicrobial activity and low propensity for developing resistance. This is for the first time; proteome sequences of Aegle marmelos were subjected to in-silico digestion and AMP prediction were performed using DBAASP server. After screening the peptides on the basis of different physiochemical property, peptide sequence GKEAATKAIKEWGQPKSKITH (AM1) shows the maximum binding affinity with - 10.2 Kcal/mol in comparison with the standard drug (Trimethoprim) with - 7.4 kcal/mol and - 6.8 Kcal/mol for DHFR and SaTrmK enzyme respectively. Molecular dynamics simulation performed for 300ns, it has been found that peptide was able to stabilize the protein more effectively, analysed by RMSD, RMSF, and other statistical analysis. Free binding energy for DHFR and SaTrmK interaction from MMPBSA analysis with peptide was found to be -47.69 and - 44.32 Kcal/mol and for Trimethoprim to be -13.85 Kcal/mol and - 11.67 Kcal/mol respectively. Further in-vitro study was performed against Methicillin Susceptible Staphylococcus aureus (MSSA), Methicillin Resistant Staphylococcus aureus (MRSA), Multi-Drug Resistant Staphylococcus aureus (MDR-SA) strain, where MIC values found to be 2, 4, and 8.5 µg/ml lesser in comparison to trimethoprim which has higher MIC values 2.5, 5, and 9.5 µg/ml respectively. Thus, our study provides the insight for the further in-vivo study of the peptides against multi-drug resistant S. aureus.
Identifiants
pubmed: 39468175
doi: 10.1038/s41598-024-76553-0
pii: 10.1038/s41598-024-76553-0
doi:
Substances chimiques
Antimicrobial Peptides
0
Anti-Bacterial Agents
0
Tetrahydrofolate Dehydrogenase
EC 1.5.1.3
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25822Informations de copyright
© 2024. The Author(s).
Références
Tenover, F. C. & Goering, R. V. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J. Antimicrob. Chemother. 64, 441–446 (2009).
pubmed: 19608582
doi: 10.1093/jac/dkp241
David, M. Z. & Daum, R. S. Treatment of Staphylococcus aureus infections. Curr. Top. Microbiol. Immunol. 409, 325–383 (2017).
pubmed: 28900682
Tavares, A. et al. Insights into Alpha-Hemolysin (hla) evolution and expression among Staphylococcus aureus clones with Hospital and Community Origin. PLOS ONE. 9, e98634–e98634 (2014).
pubmed: 25033196
pmcid: 4102472
doi: 10.1371/journal.pone.0098634
Udo, E. E. & Al-Sweih, N. Dominance of community-associated methicillin-resistant Staphylococcus aureus clones in a maternity hospital. PLOS ONE. 12, e0179563 (2017).
pubmed: 28640870
pmcid: 5480892
doi: 10.1371/journal.pone.0179563
Ng, M. et al. Induction of MRSA Biofilm by Low-Dose β-Lactam Antibiotics: Specificity, Prevalence and Dose-Response Effects. Dose-Response 12, dose-response.1 (2013).
Moravej, H. et al. Antimicrobial peptides: features, Action, and their resistance mechanisms in Bacteria. Microb. Drug Resist. (Larchmont N Y). 24, 747–767 (2018).
doi: 10.1089/mdr.2017.0392
Guryanova, S. V. & Ovchinnikova, T. V. Immunomodulatory and Allergenic properties of antimicrobial peptides. Int. J. Mol. Sci. 23, 2499 (2022).
pubmed: 35269641
pmcid: 8910669
doi: 10.3390/ijms23052499
Li, X., Zuo, S., Wang, B., Zhang, K. & Wang, Y. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules. 27, 2675 (2022).
pubmed: 35566025
pmcid: 9104849
doi: 10.3390/molecules27092675
Sharma, N. et al. Aegle marmelos (L.) Coaneunderutilizedifruit FruithighhnutraceuticaluvaluesVaaureviewReview. Int. J. Mol. Sci. 23, 10889 (2022).
pubmed: 36142805
pmcid: 9504793
doi: 10.3390/ijms231810889
Baliga, M. S., Thilakchand, K. R., Rai, M. P., Rao, S. & Venkatesh, P. Aegle marmelos (L.) Correa (Baelitsnphytochemicalsmicals itreatmentatment and Prevention of Cancer. Integr. Cancer Ther. 12, 187–196 (2012).
pubmed: 23089553
doi: 10.1177/1534735412451320
Gasteiger, E. et al. Protein Identification and Analysis Tools on the ExPASy server. Proteom. Protocols Handb. 571–607. https://doi.org/10.1385/1-59259-890-0:571 (2005).
Pirtskhalava, M. et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49, D288–D297 (2020).
pmcid: 7778994
doi: 10.1093/nar/gkaa991
Wang, G., Li, X. & Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2015).
pubmed: 26602694
pmcid: 4702905
doi: 10.1093/nar/gkv1278
Wei, L., Ye, X., Sakurai, T., Mu, Z. & Wei, L. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics. 38, 1514–1524 (2022).
pubmed: 34999757
doi: 10.1093/bioinformatics/btac006
Xiong, G. et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 49, W5–W14 (2021).
pubmed: 33893803
pmcid: 8262709
doi: 10.1093/nar/gkab255
Gautam, A. et al. In silico approaches for designing highly effective cell penetrating peptides. J. Translational Med. 11 (2013). https://doi.org/10.1186/1479-5876-11-74
Gautam, A., Chaudhary, K., Kumar, R. & Raghava, G. P. S. Computer-aided virtual screening and Designing of cell-penetrating peptides. Methods Mol. Biol. 1324, 59–69 (2015).
pubmed: 26202262
doi: 10.1007/978-1-4939-2806-4_4
Chaudhary, K. et al. A web server and Mobile App for Computing hemolytic potency of peptides. Sci. Rep. 6, (2016). https://doi.org/10.1038/srep22843
Gupta, S. et al. Silico Approach for Predicting toxicity of peptides and proteins. PLoS ONE. 8, e73957 (2013).
pubmed: 24058508
pmcid: 3772798
doi: 10.1371/journal.pone.0073957
Gupta, S. et al. Peptide toxicity prediction. Methods Mol. Biol. 1268, 143–157 (2014).
doi: 10.1007/978-1-4939-2285-7_7
Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 20, (2014). https://doi.org/10.1007/s00894-014-2278-5
Pintado-Grima, C., Iglesias, V., Santos, J., Uversky, V. N. & Ventura, S. DispHScan: a Multi-sequence web Tool for Predicting protein disorder as a function of pH. Biomolecules. 11, 1596 (2021).
pubmed: 34827596
pmcid: 8616002
doi: 10.3390/biom11111596
Hashemi, Z. S. et al. In silico approaches for the design and optimization of interfering peptides against protein-protein interactions. Front. Mol. Biosci. 8, 669431 (2021).
pubmed: 33996914
pmcid: 8113820
doi: 10.3389/fmolb.2021.669431
Shen, Y., Maupetit, J., Derreumaux, P. & Tufféry, P. Improved PEP-FOLD Approach for peptide and Miniprotein structure prediction. J. Chem. Theory Comput. 10, 4745–4758 (2014).
pubmed: 26588162
doi: 10.1021/ct500592m
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
doi: 10.1107/S0021889892009944
Honorato, R. V. et al. Structural Biology in the clouds: the WeNMR-EOSC ecosystem. Front. Mol. Biosci. 8, (2021). https://doi.org/10.3389/fmolb.2021.729513
van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of Biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).
pubmed: 26410586
doi: 10.1016/j.jmb.2015.09.014
Vangone, A. & Bonvin, A. P. R. O. D. I. G. Y. A contact-based predictor of binding Affinity in protein-protein complexes. BIO-PROTOCOL 7, (2017). https://doi.org/10.21769/BioProtoc.2124
Bowers, K. J. et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity clusters. IEEE Xplore. 43–43. https://doi.org/10.1109/SC.2006.54 (2006). https://ieeexplore.ieee.org/document/4090217
Ertl, P., Rohde, B. & Selzer, P. Fast calculation of Molecular Polar Surface Area as a Sum of Fragment-based contributions and its application to the prediction of Drug Transport properties. J. Med. Chem. 43, 3714–3717 (2000).
pubmed: 11020286
doi: 10.1021/jm000942e
Ruan, Z. et al. Synergistic effects from Combination of Cryptotanshinone and Fosfomycin Against Fosfomycin-Susceptible and Fosfomycin-Resistant Staphylococcus aureus. Infect. Drug Resist. Volume. 13, 2837–2844 (2020).
doi: 10.2147/IDR.S255296
Wang, L. et al. Antimicrobial peptide JH-3 effectively kills Salmonella enterica Serovar Typhimurium strain CVCC541 and reduces its pathogenicity in mice. Probiotics Antimicrob. Proteins. 11, 1379–1390 (2019).
pubmed: 31001786
doi: 10.1007/s12602-019-09533-w
Zhu, C. et al. The Antimicrobial peptide MPX can kill Staphylococcus aureus, reduce biofilm formation, and effectively treat bacterial skin infections in mice. Front. Veterinary Sci. 9, (2022).https://doi.org/10.3389/fvets.2022.819921.
Cp, M. & Fleming Kg. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 108, 10174–10177 (2011).
doi: 10.1073/pnas.1103979108
Keil, B. Specificity of Proteolysis (Springer Berlin, Heidelberg,, 1992). https://doi.org/10.1007/978-3-642-48380-6
Boman, H. G. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254, 197–215 (2003).
pubmed: 12930229
doi: 10.1046/j.1365-2796.2003.01228.x
Okella, H. et al. ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Front. Mol. Biosci. 9, 1039286 (2022).
pubmed: 36567944
pmcid: 9772024
doi: 10.3389/fmolb.2022.1039286
Tsuzuki, S., Yu, J., Matsunaga, N. & Ohmagari, N. Length of stay, hospitalisation costs and in-hospital mortality of methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia in Japan. Public. Health. 198, 292–296 (2021).
pubmed: 34507134
doi: 10.1016/j.puhe.2021.07.046
Jia, M. et al. Antibacterial effect of S-Porphin sodium photodynamic therapy on Staphylococcus aureus and multiple drug resistance Staphylococcus aureus. Photodiagn. Photodyn. Ther. 28, 80–87 (2019).
doi: 10.1016/j.pdpdt.2019.08.031
Li, C. et al. Antibacterial activity of AI-Hemocidin 2, a novel N-Terminal peptide of Hemoglobin purified from Arca inflata. Mar. Drugs. 15, 205 (2017).
pubmed: 28661457
pmcid: 5532647
doi: 10.3390/md15070205
Pei, Z. et al. Biological characteristics of a new antibacterial peptide and its antibacterial mechanisms against Gram-negative bacteria. Pol. J. Vet. Sci. 21, 533–542 (2018).
pubmed: 30468326
Kobbi, S. et al. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. Microb. Pathog. 115, 41–49 (2018).
pubmed: 29221796
doi: 10.1016/j.micpath.2017.12.009
Kang, H. K., Seo, C. H., Luchian, T. & Park, Y. Pse-T2, an Antimicrobial peptide with High-Level, Broad-Spectrum Antimicrobial Potency and skin biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa infection. Antimicrob. Agents Chemother. 62, (2018). https://doi.org/10.1128/aac.01493-18
Singh, G. et al. Identification of natural DHFR inhibitors in MRSA strains: structure-based drug design study. Results Chem. 4, 100292 (2022).
doi: 10.1016/j.rechem.2022.100292
Heaslet, H. et al. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins Struct. Funct. Bioinform. 76, 706–717 (2009).
doi: 10.1002/prot.22383
Dinari, M., Gharahi, F. & Asadi, P. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J. Mol. Struct. 1156, 43–50 (2018).
doi: 10.1016/j.molstruc.2017.11.087
Sweeney, P. et al. Structure, dynamics, and molecular inhibition of the Staphylococcus aureus m1A22-tRNA methyltransferase TrmK. J. Biol. Chem. 298, 102040 (2022).
pubmed: 35595101
pmcid: 9190014
doi: 10.1016/j.jbc.2022.102040
Yuan, Y. G., Peng, Q. L. & Gurunathan, S. Effects of Silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-infected goats: an Alternative Approach for Antimicrobial Therapy. Int. J. Mol. Sci. 18, 569 (2017).
pubmed: 28272303
pmcid: 5372585
doi: 10.3390/ijms18030569
Wang, S. et al. Use of the Antimicrobial peptide sublancin with combined antibacterial and immunomodulatory activities to protect against Methicillin-resistant Staphylococcus aureus infection in mice. J. Agric. Food Chem. 65, 8595–8605 (2017).
pubmed: 28906115
doi: 10.1021/acs.jafc.7b02592
Randhawa, H. K. et al. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus. Appl. Microbiol. Biotechnol. 100, 4073–4083 (2016).
pubmed: 26837216
doi: 10.1007/s00253-016-7329-7
Paul, P. et al. 1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Arch. Microbiol. 203, 1183–1193 (2020).
pubmed: 33230594
doi: 10.1007/s00203-020-02117-1
Deng, Q. et al. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces. Food Res. Int. 102, 8–13 (2017).
pubmed: 29196015
doi: 10.1016/j.foodres.2017.09.057
de Aguiar, F. L. L. et al. Antibiofilm Activity on Candida albicans and mechanism of action on Biomembrane models of the Antimicrobial peptide Ctn[15–34]. Int. J. Mol. Sci. 21, 8339 (2020).
pubmed: 33172206
pmcid: 7664368
doi: 10.3390/ijms21218339
Yang, Y. et al. A novel hydroxyapatite-binding antimicrobial peptide against oral biofilms. Clin. Oral Invest. 23, 2705–2712 (2018).
doi: 10.1007/s00784-018-2701-x