Intraspecific diversity is critical to population-level risk assessments.

Contaminants monitoring Daphnia Environmental science Genetic variation Risk assessment Toxicology

Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 10 2024
Historique:
received: 07 08 2024
accepted: 16 10 2024
medline: 29 10 2024
pubmed: 29 10 2024
entrez: 29 10 2024
Statut: epublish

Résumé

Environmental risk assessment (ERA) is critical for protecting life by predicting population responses to contaminants. However, routine toxicity testing often examines only one genotype from surrogate species, potentially leading to inaccurate risk assessments, as natural populations typically consist of genetically diverse individuals. To evaluate the importance of intraspecific variation in translating toxicity testing to natural populations, we quantified the magnitude of phenotypic variation between 20 Daphnia magna clones exposed to two levels of microcystins, a cosmopolitan cyanobacterial toxin. We observed significant genetic variation in survival, growth, and reproduction, which increased under microcystins exposure. Simulations of survival showed that using a single genotype for toxicity tolerance estimates on average failed to produce accurate predictions within the 95% confidence interval over half of the time. Whole genome sequencing of the 20 clones tested for correlations between toxicological responses and genomic divergence, including candidate loci from prior gene expression studies. We found no overall correlations, indicating that clonal variation, rather than variation at candidate genes, predicts population-level responses to toxins. These results highlight the importance of incorporating broad intraspecific genetic variation, without focusing specifically on variation in candidate genes, into ERAs to more reliably predict how local populations will respond to contaminants.

Identifiants

pubmed: 39468236
doi: 10.1038/s41598-024-76734-x
pii: 10.1038/s41598-024-76734-x
doi:

Substances chimiques

Microcystins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25883

Subventions

Organisme : NIH HHS
ID : 1R35GM147264
Pays : United States
Organisme : NIH HHS
ID : 1R35GM147264
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Levin, S. A., Harwell, M. A., Kelly, J. R., Kimball, K. D. & Ecotoxicology, Problems and approaches. In Ecotoxicology: Problems and Approaches (eds Levin, S. A. et al.) 3–7 (Springer New York, New York, 1989).
doi: 10.1007/978-1-4612-3520-0_1
Soares, A. M. V. M., Baird, D. J. & Calow, P. Interclonal variation in the performance ofDaphnia magnastraus in chronic bioassays. Environ. Toxicol. Chem. 11, 1477–1483 (1992).
Barata, C., Baird, D. J. & Soares, A. M. V. M. Determining genetic variability in the distribution of sensitivities to toxic stress among and within field populations of Daphnia magna. Environ. Sci. Technol. 36, 3045–3049 (2002).
pubmed: 12141480 doi: 10.1021/es0158556
Clements, W. H. & Rohr, J. R. Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).
pubmed: 19358627 doi: 10.1897/09-140.1
Newman, M. C. Fundamentals of Ecotoxicology (CRC, 2009).
Stark, J. D., Vargas, R. I. & Banks, J. E. Incorporating variability in point estimates in risk assessment: bridging the gap between LC50 and population endpoints. Environ. Toxicol. Chem. 34, 1683–1688 (2015).
pubmed: 25760716 doi: 10.1002/etc.2978
Barata, C., Baird, D. J. & Markich, S. J. Influence of genetic and environmental factors on the tolerance of Daphnia magna Straus to essential and non-essential metals. Aquat. Toxicol. 42, 115–137 (1998).
doi: 10.1016/S0166-445X(98)00039-3
Relyea, R. & Hoverman, J. Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol. Lett. 9, 1157–1171 (2006).
pubmed: 16972879 doi: 10.1111/j.1461-0248.2006.00966.x
Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science. 313, 966–968 (2006).
pubmed: 16917062 doi: 10.1126/science.1128326
Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).
pubmed: 18006185 doi: 10.1016/j.tree.2007.09.008
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
pubmed: 29203921 doi: 10.1038/s41559-017-0402-5
Rudman, S. M. & Schluter, D. Ecological impacts of reverse speciation in Threespine Stickleback. Curr. Biol. 26, 490–495 (2016).
pubmed: 26804556 doi: 10.1016/j.cub.2016.01.004
Rudman, S. M. et al. Ionome and elemental transport kinetics shaped by parallel evolution in threespine stickleback. Ecol. Lett. 22, 645–653 (2019).
pubmed: 30724019 doi: 10.1111/ele.13225
Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science. 375, eabj7484 (2022).
pubmed: 35298245 pmcid: 10684103 doi: 10.1126/science.abj7484
Weedall, G. D. et al. An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles Funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLoS Genet. 16, e1008822 (2020).
pubmed: 32497040 pmcid: 7297382 doi: 10.1371/journal.pgen.1008822
Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science. 354, 1305–1308 (2016).
pubmed: 27940876 pmcid: 5206662 doi: 10.1126/science.aah4993
Lemaire, V. et al. Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia. Evol. Appl. 5, 168–182 (2012).
pubmed: 25568039 doi: 10.1111/j.1752-4571.2011.00225.x
Hochmuth, J. D., De Meester, L., Pereira, C. M. S., Janssen, C. R. & De Schamphelaere, K. A. C. Rapid Adaptation of a Daphnia magna Population to Metal stress is Associated with heterozygote excess. Environ. Sci. Technol. 49, 9298–9307 (2015).
pubmed: 26130190 doi: 10.1021/acs.est.5b00724
Jansen, M. et al. Experimental evolution reveals high insecticide tolerance in Daphnia inhabiting farmland ponds. Evol. Appl. 8, 442–453 (2015).
pubmed: 26029258 pmcid: 4430768 doi: 10.1111/eva.12253
Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).
doi: 10.1111/j.1365-2435.2010.01727.x
Lemmen, K. D., Butler, O. M., Koffel, T., Rudman, S. M., & Symons, C. C. Stoichiometric traits vary widely within species: A meta-analysis of common garden experiments. Front. Ecol. Evol. 7, 339 (2019).
Chapman, P. M., Fairbrother, A. & Brown, D. A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ. Toxicol. Chem. 17, 99–108 (1998).
doi: 10.1002/etc.5620170112
Heugens, E. H., Hendriks, A. J., Dekker, T., van Straalen, N. M. & Admiraal, W. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol. 31, 247–284 (2001).
pubmed: 11405441 doi: 10.1080/20014091111695
Bickham, J. W. The four cornerstones of Evolutionary Toxicology. Ecotoxicology. 20, 497–502 (2011).
pubmed: 21424723 doi: 10.1007/s10646-011-0636-y
Snape, J. R., Maund, S. J., Pickford, D. B. & Hutchinson, T. H. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol. 67, 143–154 (2004).
pubmed: 15003699 doi: 10.1016/j.aquatox.2003.11.011
Waters, M. D. & Fostel, J. M. Toxicogenomics and systems toxicology: aims and prospects. Nat. Rev. Genet. 5, 936–948 (2004).
pubmed: 15573125 doi: 10.1038/nrg1493
Oziolor, E. M. et al. Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science. 364, 455–457 (2019).
pubmed: 31048485 doi: 10.1126/science.aav4155
van Straalen, N. M. & Feder, M. E. Ecological and evolutionary Functional Genomics—How can it contribute to the Risk Assessment of chemicals? Environ. Sci. Technol. 46, 3–9 (2012).
pubmed: 22043966 doi: 10.1021/es2034153
Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).
pubmed: 29109975 pmcid: 5665595 doi: 10.1126/sciadv.1701413
Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19, 131 (2018).
pubmed: 30205843 pmcid: 6131752 doi: 10.1186/s13059-018-1520-3
Reid, N. M. & Whitehead, A. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales: toward a vision of predictive ecotoxicology. Brief. Funct. Genomics. 15, 358–364 (2016).
pubmed: 26700295 doi: 10.1093/bfgp/elv060
Rennison, D. J., Rudman, S. M. & Schluter, D. Genetics of adaptation: experimental test of a biotic mechanism driving divergence in traits and genes. Evol. Lett. 3, 513–520 (2019).
pubmed: 31636943 pmcid: 6791182 doi: 10.1002/evl3.135
Betancourt, N. J. et al. Allelic polymorphism at foxo contributes to local adaptation in Drosophila melanogaster. Mol. Ecol. 30, 2817–2830 (2021).
pubmed: 33914989 pmcid: 8693798 doi: 10.1111/mec.15939
Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution. 66, 1–17 (2012).
pubmed: 22220860 doi: 10.1111/j.1558-5646.2011.01486.x
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of Complex traits: from polygenic to Omnigenic. Cell. 169, 1177–1186 (2017).
pubmed: 28622505 pmcid: 5536862 doi: 10.1016/j.cell.2017.05.038
Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W. & Hairston, N. J. Jr. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc. Biol. Sci. 279, 1873–1882 (2012).
pubmed: 22298849 pmcid: 3311900
Ebert, D. Daphnia as a versatile model system in ecology and evolution. Evodevo. 13, 16 (2022).
pubmed: 35941607 pmcid: 9360664 doi: 10.1186/s13227-022-00199-0
Baird, D. J., Barber, I., Bradley, M., Soares, A. M. & Calow, P. A comparative study of genotype sensitivity to acute toxic stress using clones of Daphnia magna straus. Ecotoxicol. Environ. Saf. 21, 257–265 (1991).
pubmed: 1868782 doi: 10.1016/0147-6513(91)90064-V
Vanoverbeke, J. & De Meester, L. Among-populational genetic differentiation in the cyclical parthenogen Daphnia magna (Crustacea, Anomopoda) and its relation to geographic distance and clonal diversity. Hydrobiologia, 360, 135–142 (1997).
Hairston, N. G. Jr et al. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution. 55, 2203–2214 (2001).
pubmed: 11794781
Govaert, L., De Meester, L., Spaak, P. & Hairston, N. G. Eco-evolutionary dynamics in Freshwater systems. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, (2021).
Lynch, M., Wei, W., Ye, Z., & Pfrender, M. The genome-wide signature of short-term temporal selection. Proceedings of the National Academy of Sciences 121 (28), e2307107121 (2024).
Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science. 331, 555–561 (2011).
pubmed: 21292972 pmcid: 3529199 doi: 10.1126/science.1197761
Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae. 54, 4–20 (2016).
pubmed: 28073480 doi: 10.1016/j.hal.2015.12.007
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 94, 849–873 (2019).
pubmed: 30467930 doi: 10.1111/brv.12480
Chorus, I. & Welker, M. Toxic Cyanobacteria in Water:A Guide to Their Public Health Consequences, Monitoring and Management (CRC, 2021).
doi: 10.1201/9781003081449
Shahmohamadloo, R. S. et al. Lake Erie fish safe to eat yet afflicted by algal hepatotoxins. Sci. Total Environ. 861, 160474 (2023).
pubmed: 36481113 doi: 10.1016/j.scitotenv.2022.160474
Shahmohamadloo, R. S. et al. CAB International,. Diseases and Disorders in Fish due to Harmful Algal Blooms. In: Climate Change on Diseases and Disorders of Finfish in Cage Culture, 3rd Edition (eds. Woo, P. T. K. & Subasinghe, R. P.) 387–429 (2023).
Shahmohamadloo, R. S. et al. Cyanotoxins accumulate in Lake St. Clair fish yet their fillets are safe to eat. Sci. Total Environ. 874, 162381 (2023).
pubmed: 36870491 doi: 10.1016/j.scitotenv.2023.162381
Hairston, N. G. Jr et al. Lake ecosystems: Rapid evolution revealed by dormant eggs. Nature. 401, 446–446 (1999).
doi: 10.1038/46731
Isanta-Navarro, J. et al. Reversed evolution of grazer resistance to cyanobacteria. Nat. Commun. 12, 1945 (2021).
pubmed: 33782425 pmcid: 8007715 doi: 10.1038/s41467-021-22226-9
Sarnelle, O. & Wilson, A. E. Local adaptation ofDaphnia pulicariato toxic cyanobacteria. Limnol. Oceanogr. 50, 1565–1570 (2005).
doi: 10.4319/lo.2005.50.5.1565
Chislock, M. F., Sarnelle, O., Jernigan, L. M. & Wilson, A. E. Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Water Res. 47, 1961–1970 (2013).
pubmed: 23395484 doi: 10.1016/j.watres.2012.12.038
Shahmohamadloo, R. S., Poirier, D. G., Almirall, O., Bhavsar, X., Sibley, P. K. & S. P. & Assessing the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates. Ecotoxicol. Environ. Saf. 188, 109945 (2020).
pubmed: 31753309 doi: 10.1016/j.ecoenv.2019.109945
Ferrão-Filho, A. S., Azevedo, S. M. F. O. & DeMott, W. R. Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshw. Biol. 45, 1–19 (2000).
doi: 10.1046/j.1365-2427.2000.00613.x
Lürling, M. & van der Grinten, E. Life-history characteristics ofDaphniaexposed to dissolved microcystin-LR and to the cyanobacteriumMicrocystis aeruginosawith and without microcystins. Environ. Toxicol. Chem. 22, 1281–1287 (2003).
pubmed: 12785585
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).
doi: 10.1017/CBO9780511623486
Schwarzenberger, A. et al. Deciphering the genetic basis of microcystin tolerance. BMC Genom. 15, 776 (2014).
doi: 10.1186/1471-2164-15-776
Lyu, K. et al. Transcriptomic analysis dissects the mechanistic insight into the Daphnia clonal variation in tolerance to toxic Microcystis. Limnol. Oceanogr. 64, 272–283 (2019).
doi: 10.1002/lno.11038
Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Jr. Rapid evolution drives ecological dynamics in a predator-prey system. Nature. 424, 303–306 (2003).
pubmed: 12867979 doi: 10.1038/nature01767
Farkas, T. E., Mononen, T., Comeault, A. A., Hanski, I. & Nosil, P. Evolution of camouflage drives rapid ecological change in an insect community. Curr. Biol. 23, 1835–1843 (2013).
pubmed: 24055155 doi: 10.1016/j.cub.2013.07.067
Rudman, S. M. et al. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem. Proc. Biol. Sci. 282, 20151234 (2015).
pubmed: 26203004 pmcid: 4528534
Coutellec, M. A. & Barata, C. An introduction to evolutionary processes in ecotoxicology. Ecotoxicology. 20, 493–496 (2011).
pubmed: 21416110 doi: 10.1007/s10646-011-0637-x
Hawkins, N. J., Bass, C., Dixon, A. & Neve, P. The evolutionary origins of pesticide resistance. Biol. Rev. Camb. Philos. Soc. 94, 135–155 (2019).
pubmed: 29971903 doi: 10.1111/brv.12440
Weston, D. et al. Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc. Natl. Acad. Sci. U S A. 110, 16532–16537 (2013).
pubmed: 24065824 pmcid: 3799301 doi: 10.1073/pnas.1302023110
Bolker, B. M. Ecological Models and Data in R (Princeton University Press, 2008).
doi: 10.2307/j.ctvcm4g37
Shahmohamadloo, R. S., Tissier, M. L., & Guzman, L. M. Risk assessments underestimate threat of pesticides to wild bees. Conservation Letters 17 (4), e13022 (2024).
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
pubmed: 16701083 doi: 10.1016/j.tree.2006.02.002
Gustafsson, S. & Hansson, L. A. Development of tolerance against toxic cyanobacteria in Daphnia. Aquat. Ecol. 38, 37–44 (2004).
doi: 10.1023/B:AECO.0000020985.47348.5e
Forbes, V. E. Genetics and ecotoxicology—insights from the interface. In: Genetics and Ecotoxicology 1–8. CRC Press, New York, (1998).
Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. Nat. Ecol. Evol. 2, 9–15 (2018).
pubmed: 29158555 doi: 10.1038/s41559-017-0385-2
Jensen, J. D. et al. The importance of the Neutral Theory in 1968 and 50 years on: A response to Kern and Hahn 2018: COMMENTARY. Evolution 73, 111–114 (2019).
pubmed: 30460993 doi: 10.1111/evo.13650
Gaytán, B. D. & Vulpe, C. D. Functional toxicology: tools to advance the future of toxicity testing. Front. Genet. 5, 110 (2014).
pubmed: 24847352 pmcid: 4017141 doi: 10.3389/fgene.2014.00110
Oziolor, E. M., Bickham, J. W. & Matson, C. W. Evolutionary toxicology in an omics world. Evol. Appl. 10, 752–761 (2017).
pubmed: 29151868 pmcid: 5680431 doi: 10.1111/eva.12462
Schwarzenberger, A., Kuster, C. J. & Von Elert, E. Molecular mechanisms of tolerance to cyanobacterial protease inhibitors revealed by clonal differences in Daphnia magna. Mol. Ecol. 21, 4898–4911 (2012).
pubmed: 22943151 doi: 10.1111/j.1365-294X.2012.05753.x
Breitholtz, M., Rudén, C., Hansson, S. O. & Bengtsson, B. E. Ten challenges for improved ecotoxicological testing in environmental risk assessment. Ecotoxicol. Environ. Saf. 63, 324–335 (2006).
pubmed: 16406525 doi: 10.1016/j.ecoenv.2005.12.009
Oziolor, E. M., DeSchamphelaere, K., Lyon, D., Nacci, D. & Poynton, H. Evolutionary Toxicology-An Informational Tool for Chemical Regulation? Environ. Toxicol. Chem. 39, 257–268 (2020).
pubmed: 31978273 pmcid: 7885860 doi: 10.1002/etc.4611
Loria, A., Cristescu, M. E. & Gonzalez, A. Genotype diversity promotes the persistence of Daphnia populations exposed to severe copper stress. J. Evol. Biol. 35, 265–277 (2022).
pubmed: 35000231 doi: 10.1111/jeb.13979
Orsini, L., Spanier, K. I. & Meester, D. E. Genomic signature of natural and anthropogenic stress in wild populations of the waterflea Daphnia magna: validation in space, time and experimental evolution. Mol. Ecol. 21, 2160–2175 (2012).
pubmed: 22257313 doi: 10.1111/j.1365-294X.2011.05429.x
Kilham, S. S., Kreeger, D. A., Lynn, S. G. & Goulden, C. E. Herrera, L. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia. 377, 147–159 (1998).
doi: 10.1023/A:1003231628456
Shahmohamadloo, R. S. et al. An efficient and affordable laboratory method to produce and sustain high concentrations of microcystins by Microcystis aeruginosa. MethodsX. 6, 2521–2535 (2019).
pubmed: 31763185 pmcid: 6861626 doi: 10.1016/j.mex.2019.10.024
Rohrlack, T. et al. Ingestion of microcystins byDaphnia: intestinal uptake and toxic effects. Limnol. Oceanogr. 50, 440–448 (2005).
doi: 10.4319/lo.2005.50.2.0440
Ontario Ministry of the Environment and Climate Change Aquatic Toxicology Unit. Standard Operating Procedure: Daphnia Magna Culturing, SOP DM1, Volume 9. (2014).
Birbeck, J. A., Westrick, J. A., O’Neill, G. M., Spies, B., & Szlag, D. C. Comparative analysis of microcystin prevalence in Michigan lakes by online concentration LC/MS/MS and ELISA. Toxins  11 (1), 13 (2019).
Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
pubmed: 19185386 doi: 10.1016/j.tree.2008.10.008
R Core Team. R: A Language and Environment for Statistical Computing. Preprint at (2022).

Auteurs

René S Shahmohamadloo (RS)

School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA. rene.shahmohamadloo@wsu.edu.
Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada. rene.shahmohamadloo@wsu.edu.

Seth M Rudman (SM)

School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA. seth.rudman@wsu.edu.
Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada. seth.rudman@wsu.edu.

Catherine I Clare (CI)

School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA.

Judy A Westrick (JA)

Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.

Xueqi Wang (X)

Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.

Luc De Meester (L)

Laboratory of Aquatic Ecology, Evolution, and Conservation, University of Leuven, Leuven, 3000, Belgium.

John M Fryxell (JM)

Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Department of Biology, University of Victoria, British Columbia, Victoria, V8P 5C2, Canada.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH