Effect of various storage media on the physicochemical properties of plasma-treated dental zirconia.
Hydrophilicity
Hydrophobicity
Non-thermal atmospheric pressure plasma
Surface properties
Water
Zirconia
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 10 2024
29 10 2024
Historique:
received:
23
07
2024
accepted:
28
10
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
epublish
Résumé
This study investigated the effect of various storage media on the physicochemical properties of plasma-treated 3-mol% yttria-stabilized tetragonal zirconia: air, vacuum, deionized water (DIW), and plasma-activated water (PAW). Each group was divided into five subgroups based on storage periods: immediately after NTP irradiation (T0), and after 1 week (T1), 2 weeks (T2), 3 weeks (T3), and 4 weeks (T4). The control group (C) received no treatment. The storage groups were monitored weekly using various analytical techniques, including contact angle measurements, scanning electron microscopy (SEM), focused ion beam (FIB)-SEM, confocal laser scanning microscopy (CLSM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). Our results demonstrate that plasma-treated zirconia surfaces stored in DIW retained or even increased their hydrophilicity due to the formation of hydrogen bonds and preservation of nitrogen functionalities. In contrast, surfaces stored in air exhibited significant hydrophobic recovery. FIB-SEM analysis showed no adverse internal structural changes regardless of storage medium. The roughness of the zirconia surface slightly increased after plasma treatment and was generally retained across all storage groups for 4 weeks, except for the air storage group. This study concludes that storage in DIW effectively preserves the enhanced surface properties of plasma-activated zirconia for up to 4 weeks.
Identifiants
pubmed: 39468369
doi: 10.1038/s41598-024-77939-w
pii: 10.1038/s41598-024-77939-w
doi:
Substances chimiques
Zirconium
C6V6S92N3C
Plasma Gases
0
zirconium oxide
S38N85C5G0
Dental Materials
0
Yttrium
58784XQC3Y
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25895Subventions
Organisme : Ministry of Science and ICT, Republic of Korea
ID : 2022R1F1A1067929
Organisme : Ministry of Health & Welfare, Republic of Korea
ID : HR21C1003
Organisme : Korea Health Technology R&D Project through the KHIDI, Republic of Korea
ID : RS-2024-00438448
Informations de copyright
© 2024. The Author(s).
Références
Zhianmanesh, M., Gilmour, A., Bilek, M. M. M. & Akhavan, B. <ArticleTitle Language=“En”>Plasma surface functionalization: a comprehensive review of advances in the quest for bioinstructive materials and interfaces. Appl. Phys. Rev. 10, 021301. https://doi.org/10.1063/5.0130829 (2023).
doi: 10.1063/5.0130829
Saeed, M., Alshammari, Y., Majeed, S. A. & Al-Nasrallah, E. Chemical vapour deposition of graphene-synthesis, characterisation, and applications: A review. Molecules 25, 3856. https://doi.org/10.3390/molecules25173856 (2020).
doi: 10.3390/molecules25173856
pubmed: 32854226
pmcid: 7503287
Ma, C. et al. Plasma-controlled surface wettability: Recent advances and future applications. Int. Mater. Rev. 68, 82–119. https://doi.org/10.1080/09506608.2022.2047420 (2023).
doi: 10.1080/09506608.2022.2047420
Bormashenko, E., Chaniel, G. & Grynyov, R. Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery. Appl. Surf. Sci. 273, 549–553. https://doi.org/10.1016/j.apsusc.2013.02.078 (2013).
doi: 10.1016/j.apsusc.2013.02.078
Tsougeni, K., Vourdas, N., Tserepi, A., Gogolides, E. & Cardinaud, C. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir 25, 11748–11759. https://doi.org/10.1021/la901072z (2009).
doi: 10.1021/la901072z
pubmed: 19788226
Prysiazhnyi, V., Slavicek, P. & Cernak, M. Aging of plasma-activated copper and gold surfaces and its hydrophilic recovery after water immersion. Thin Solid Films 550, 373–380. https://doi.org/10.1016/j.tsf.2013.10.176 (2014).
doi: 10.1016/j.tsf.2013.10.176
Choi, S. H. et al. Effect of wet storage on the bioactivity of ultraviolet light- and non-thermal atmospheric pressure plasma-treated titanium and zirconia implant surfaces. Mater. Sci. Eng. C Mater. Biol. Appl. 105, 110049. https://doi.org/10.1016/j.msec.2019.110049 (2019).
doi: 10.1016/j.msec.2019.110049
pubmed: 31546363
Prysiazhnyi, V. Atmospheric pressure plasma treatment and following aging effect of chromium surfaces. J. Surf. Eng. Mater. Adv. Technol. 3, 138–145. https://doi.org/10.4236/jsemat.2013.32018 (2013).
doi: 10.4236/jsemat.2013.32018
Wang, Z., Wang, J., Wu, R. & Wei, J. Construction of functional surfaces for dental implants to enhance osseointegration. Front. Bioeng. Biotechnol. 11, 1320307. https://doi.org/10.3389/fbioe.2023.1320307 (2023).
doi: 10.3389/fbioe.2023.1320307
pubmed: 38033823
pmcid: 10682203
Okada, M., Taketa, H., Torii, Y., Irie, M. & Matsumoto, T. Optimal sandblasting conditions for conventional-type yttria-stabilized tetragonal zirconia polycrystals. Dent. Mater. 35, 169–175. https://doi.org/10.1016/j.dental.2018.11.009 (2019).
doi: 10.1016/j.dental.2018.11.009
pubmed: 30502226
Kim, H. K., Yoo, K. W., Kim, S. J. & Jung, C. H. Phase transformations and subsurface changes in three dental zirconia grades after sandblasting with various Al2O3 particle sizes. Mater. (Basel) 14, 5321. https://doi.org/10.3390/ma14185321 (2021).
doi: 10.3390/ma14185321
Kim, H. K. & Ahn, B. Effect of Al2O3 sandblasting particle size on the surface topography and residual compressive stresses of three different dental zirconia grades. Mater. (Basel) 14, 610. https://doi.org/10.3390/ma14030610 (2021).
doi: 10.3390/ma14030610
Zhang, Y., Yang, T., Li, B. & Li, J. Surface modifications of zirconia with plasma pretreatment and polydopamine coating to enhance the bond strength and durability between zirconia and titanium. Dent. Mater. J. 42, 449–457. https://doi.org/10.4012/dmj.2022-185 (2023).
doi: 10.4012/dmj.2022-185
pubmed: 37032104
Ho, K. N. et al. Surface modification of zirconia ceramics through cold plasma treatment and the graft polymerization of biomolecules. J. Dent. Sci. 18, 73–80. https://doi.org/10.1016/j.jds.2022.06.007 (2023).
doi: 10.1016/j.jds.2022.06.007
pubmed: 36643227
Kang, S. U. et al. Effect of the plasma gas type on the surface characteristics of 3Y-TZP ceramic. Int. J. Mol. Sci. 23, 3007. https://doi.org/10.3390/ijms23063007 (2022).
doi: 10.3390/ijms23063007
pubmed: 35328427
pmcid: 8950882
Kang, S. U. et al. Plasma surface modification of 3Y-TZP at low and atmospheric pressures with different treatment times. Int. J. Mol. Sci. 24, 7663. https://doi.org/10.3390/ijms24087663 (2023).
doi: 10.3390/ijms24087663
pubmed: 37108832
pmcid: 10144831
Murdan, S. et al. In vivo measurement of the surface energy of human fingernail plates. Int. J. Cosmet. Sci. 34, 257–262. https://doi.org/10.1111/j.1468-2494.2012.00711.x (2012).
doi: 10.1111/j.1468-2494.2012.00711.x
pubmed: 22339495
Oss, C. J. V., Chaudhury, M. K. & Good, R. J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941. https://doi.org/10.1021/cr00088a006 (1988).
doi: 10.1021/cr00088a006
Terzis, A., Sauer, E., Yang, G., Groß, J. & Weigand, B. Characterisation of acid–base surface free energy components of urea–water solutions. Colloids Surf. Physicochem Eng. Asp 538, 774–780. https://doi.org/10.1016/j.colsurfa.2017.11.068 (2018).
doi: 10.1016/j.colsurfa.2017.11.068
Cui, X. et al. Lattice damage and expansion in RbTiOPO4 crystals induced by carbon ion implantation. Surf. Coat. Technol. 348, 142–149. https://doi.org/10.1016/j.surfcoat.2018.05.044 (2018).
doi: 10.1016/j.surfcoat.2018.05.044
Goetze, J., Yarulina, I., Gascon, J., Kapteijn, F. & Weckhuysen, B. M. Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV-vis spectroscopy. ACS Catal. 8, 2060–2070. https://doi.org/10.1021/acscatal.7b04129 (2018).
doi: 10.1021/acscatal.7b04129
pubmed: 29527401
pmcid: 5839605
Wennerberg, A., Svanborg, L. M., Berner, S. & Andersson, M. Spontaneously formed nanostructures on titanium surfaces. Clin. Oral Implants Res. 24, 203–209. https://doi.org/10.1111/j.1600-0501.2012.02429.x (2013).
doi: 10.1111/j.1600-0501.2012.02429.x
pubmed: 22332922
Campos, T. M. B. et al. Silica infiltration in partially stabilized zirconia: Effect of hydrothermal aging on mechanical properties. J. Mech. Behav. Biomed. Mater. 109, 103774. https://doi.org/10.1016/j.jmbbm.2020.103774 (2020).
doi: 10.1016/j.jmbbm.2020.103774
pubmed: 32347214
Kim, H. K. & Kim, S. H. Effect of hydrothermal aging on the optical properties of precolored dental monolithic zirconia ceramics. J. Prosthet. Dent. 121, 676–682. https://doi.org/10.1016/j.prosdent.2018.06.021 (2019).
doi: 10.1016/j.prosdent.2018.06.021
pubmed: 30580981
Lawson, S. Environmental degradation of zirconia ceramics. J. Eur. Ceram. Soc. 15, 485–502. https://doi.org/10.1016/0955-2219(95)00035-S (1995).
doi: 10.1016/0955-2219(95)00035-S
Kim, Y. S., Jung, C. H. & Park, J. Y. Low temperature degradation of yttria-stabilized tetragonal zirconia polycrystals under aqueous solutions. J. Nucl. Mater. 209, 326–331. https://doi.org/10.1016/0022-3115(94)90271-2 (1994).
doi: 10.1016/0022-3115(94)90271-2
Shin, S. & Willard, A. P. Water’s interfacial hydrogen bonding structure reveals the effective strength of surface-water interactions. J. Phys. Chem. B 122, 6781–6789. https://doi.org/10.1021/acs.jpcb.8b02438 (2018).
doi: 10.1021/acs.jpcb.8b02438
pubmed: 29871480
Kutasi, K., Popović, D., Krstulović, N. & Milošević, S. Tuning the composition of plasma-activated water by a surface-wave microwave discharge and a kHz plasma jet. Plasma Sources Sci. Technol. 28, 095010. https://doi.org/10.1088/1361-6595/ab3c2f (2019).
doi: 10.1088/1361-6595/ab3c2f
Liu, J. et al. Direct synthesis of hydrogen peroxide from plasma-water interactions. Sci. Rep. 6, 38454. https://doi.org/10.1038/srep38454 (2016).
doi: 10.1038/srep38454
pubmed: 27917925
pmcid: 5137161
Yoshimura, M., Noma, T., Kawabata, K. & Somiya, S. Role of H2O on the degrdation process of Y-TZP. J. Mater. Sci. Lett. 6, 465–467. https://doi.org/10.1007/bf01756800 (1987).
doi: 10.1007/bf01756800
Lin, C. C., Chang, Y. P., Lin, H. B. & Lin, C. H. Effect of non-lattice oxygen on ZrO2-based resistive switching memory. Nanoscale Res. Lett. 7, 187. https://doi.org/10.1186/1556-276x-7-187 (2012).
doi: 10.1186/1556-276x-7-187
pubmed: 22416817
pmcid: 3324381
Hallmann, L. et al. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dent. Mater. 32, 631–639. https://doi.org/10.1016/j.dental.2016.02.001 (2016).
doi: 10.1016/j.dental.2016.02.001
pubmed: 26898723
Hallmann, L., Ulmer, P., Reusser, E., Louvel, M. & Hämmerle, C. H. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J. Eur. Ceram. Soc. 32, 4091–4104. https://doi.org/10.1016/j.jeurceramsoc.2012.07.032 (2012).
doi: 10.1016/j.jeurceramsoc.2012.07.032
Jiang, L., Liao, Y., Wan, Q. & Li, W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J. Mater. Sci. Mater. Med. 22, 2429–2435. https://doi.org/10.1007/s10856-011-4438-9 (2011).
doi: 10.1007/s10856-011-4438-9
pubmed: 21922331
Sansao, B. M. B., Kellar, J. J., Cross, W. M., Schottler, K. & Romkes, A. Comparison of surface energy and adhesion energy of surface-treated particles. Powder Technol. 384, 267–275. https://doi.org/10.1016/j.powtec.2021.02.029 (2021).
doi: 10.1016/j.powtec.2021.02.029
Pawlus, P., Reizer, R. & Wieczorowski, M. Functional importance of surface texture parameters. Mater. (Basel) 14, 5326. https://doi.org/10.3390/ma14185326 (2021).
doi: 10.3390/ma14185326
Gupta, N., Khanna, A., Hirdesh, Dippel, A. C. & Gutowski, O. Structure of bismuth tellurite and bismuth niobium tellurite glasses and Bi2Te4O11 anti-glass by high energy X-ray diffraction. RSC Adv. 10, 13237–13251. https://doi.org/10.1039/d0ra01422b (2020).
doi: 10.1039/d0ra01422b
pubmed: 35492104
pmcid: 9051385
Lutterotti, L., Pillière, H., Fontugne, C., Boullay, P. & Chateigner, D. Full-profile search-match by the Rietveld method. J. Appl. Crystallogr. 52, 587–598. https://doi.org/10.1107/s160057671900342x (2019).
doi: 10.1107/s160057671900342x
pubmed: 31236092
pmcid: 6557175