Association analysis between an epigenetic alcohol risk score and blood pressure.
Alcohol
Blood pressure
DNA methylation
Epigenetic risk score
Hypertension
Journal
Clinical epigenetics
ISSN: 1868-7083
Titre abrégé: Clin Epigenetics
Pays: Germany
ID NLM: 101516977
Informations de publication
Date de publication:
28 Oct 2024
28 Oct 2024
Historique:
received:
09
04
2024
accepted:
26
09
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
epublish
Résumé
Epigenome-wide association studies have identified multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. This study aimed to test the hypothesis that an alcohol consumption epigenetic risk score (ERS) is associated with blood pressure (BP) traits. We implemented an ERS based on a previously reported epigenetic signature of 144 alcohol-associated CpGs in meta-analysis of participants of European ancestry. We found a one-unit increment of ERS was associated with eleven drinks of alcohol consumed per day, on average, across several cohorts (p < 0.0001). We examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with BP levels, i.e., a one-unit increase in ERS was associated with 0.74 mm Hg (p = 0.002) higher SBP and 0.50 mm Hg (p = 0.0006) higher DBP, but not with HTN. Longitudinal analyses in FHS (n = 3260) and five independent external cohorts (n = 4021) showed that the baseline ERS was not associated with a change in BP over time or with incident HTN. Our findings demonstrate that the ERS has potential clinical utility in assessing lifestyle factors related to cardiovascular risk, especially when self-reported behavioral data (e.g., alcohol consumption) are unreliable or unavailable.
Sections du résumé
BACKGROUND
BACKGROUND
Epigenome-wide association studies have identified multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. This study aimed to test the hypothesis that an alcohol consumption epigenetic risk score (ERS) is associated with blood pressure (BP) traits.
RESULTS
RESULTS
We implemented an ERS based on a previously reported epigenetic signature of 144 alcohol-associated CpGs in meta-analysis of participants of European ancestry. We found a one-unit increment of ERS was associated with eleven drinks of alcohol consumed per day, on average, across several cohorts (p < 0.0001). We examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with BP levels, i.e., a one-unit increase in ERS was associated with 0.74 mm Hg (p = 0.002) higher SBP and 0.50 mm Hg (p = 0.0006) higher DBP, but not with HTN. Longitudinal analyses in FHS (n = 3260) and five independent external cohorts (n = 4021) showed that the baseline ERS was not associated with a change in BP over time or with incident HTN.
CONCLUSIONS
CONCLUSIONS
Our findings demonstrate that the ERS has potential clinical utility in assessing lifestyle factors related to cardiovascular risk, especially when self-reported behavioral data (e.g., alcohol consumption) are unreliable or unavailable.
Identifiants
pubmed: 39468603
doi: 10.1186/s13148-024-01753-4
pii: 10.1186/s13148-024-01753-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
149Subventions
Organisme : NIH HHS
ID : R01AA028263
Pays : United States
Organisme : NIH HHS
ID : R01AA028263
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Centers for Disease Control and Prevention (CDC). Alcohol Related Disease Impact (ARDI) application [Internet]. 2024 [cited 2024 Apr 2]. www.cdc.gov/ARDI
Piano MR. Alcohol’s effects on the cardiovascular system. Alcohol Res. 2017;38:219–41.
pubmed: 28988575
pmcid: 5513687
Biddinger KJ, Emdin CA, Haas ME, Wang M, Hindy G, Ellinor PT, et al. Association of habitual alcohol intake with risk of cardiovascular disease. JAMA Netw Open. 2022;5:e223849.
doi: 10.1001/jamanetworkopen.2022.3849
pubmed: 35333364
pmcid: 8956974
Zhang X, Liu Y, Li S, Lichtenstein AH, Chen S, Na M, et al. Alcohol consumption and risk of cardiovascular disease, cancer and mortality: a prospective cohort study. Nutr J. 2021;20:13.
doi: 10.1186/s12937-021-00671-y
pubmed: 33522924
pmcid: 7852289
Fernández-Solà J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat Rev Cardiol. 2015;12:576–87.
doi: 10.1038/nrcardio.2015.91
pubmed: 26099843
Krittanawong C, Isath A, Rosenson RS, Khawaja M, Wang Z, Fogg SE, et al. Alcohol consumption and cardiovascular health. Am J Med. 2022;135:1213-1230.e3.
doi: 10.1016/j.amjmed.2022.04.021
pubmed: 35580715
pmcid: 9529807
Puddey IB, Mori TA, Barden AE, Beilin LJ. Alcohol and hypertension-new insights and lingering controversies. Curr Hypertens Rep. 2019;21:79.
doi: 10.1007/s11906-019-0984-1
pubmed: 31494743
Vasan RS, O’Donnell CJ. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001. https://doi.org/10.1056/NEJMoa003417 .
doi: 10.1056/NEJMoa003417
pubmed: 11794147
Malik R, Georgakis MK, Vujkovic M, Damrauer SM, Elliott P, Karhunen V, et al. Relationship between blood pressure and incident cardiovascular disease: linear and nonlinear Mendelian randomization analyses. Hypertension. 2021;77:2004–13.
doi: 10.1161/HYPERTENSIONAHA.120.16534
pubmed: 33813844
Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol. 2010;44:71–81.
doi: 10.1007/s12033-009-9216-2
pubmed: 19842073
Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 2019;14:421–44.
doi: 10.1080/15592294.2019.1595297
pubmed: 30915894
pmcid: 6557553
Płatek T, Polus A, Góralska J, Raźny U, Gruca A, Kieć-Wilk B, et al. DNA methylation microarrays identify epigenetically regulated lipid related genes in obese patients with hypercholesterolemia. Mol Med. 2020;26:93.
doi: 10.1186/s10020-020-00220-z
pubmed: 33028190
pmcid: 7539457
Liu J, Carnero-Montoro E, van Dongen J, Lent S, Nedeljkovic I, Ligthart S, et al. An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis. Nat Commun. 2019;10:2581.
doi: 10.1038/s41467-019-10487-4
pubmed: 31197173
pmcid: 6565679
Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, et al. DNA methylation analysis identifies loci for blood pressure regulation. Am J Hum Genet. 2017;101:888–902.
doi: 10.1016/j.ajhg.2017.09.028
pubmed: 29198723
pmcid: 5812919
Myte R, Sundkvist A, Van Guelpen B, Harlid S. Circulating levels of inflammatory markers and DNA methylation, an analysis of repeated samples from a population based cohort. Epigenetics. 2019;14:649–59.
doi: 10.1080/15592294.2019.1603962
pubmed: 31033411
pmcid: 6557598
Liu C, Marioni RE, Hedman ÅK, Pfeiffer L, Tsai P-C, Reynolds LM, et al. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry. 2018;23:422–33.
doi: 10.1038/mp.2016.192
pubmed: 27843151
Davis CG, Thake J, Vilhena N. Social desirability biases in self-reported alcohol consumption and harms. Addict Behav. 2010;35:302–11.
doi: 10.1016/j.addbeh.2009.11.001
pubmed: 19932936
Ekholm O. Influence of the recall period on self-reported alcohol intake. Eur J Clin Nutr. 2004;58:60–3.
doi: 10.1038/sj.ejcn.1601746
pubmed: 14679368
Stockwell T, Donath S, Cooper-Stanbury M, Chikritzhs T, Catalano P, Mateo C. Under-reporting of alcohol consumption in household surveys: a comparison of quantity-frequency, graduated-frequency and recent recall. Addiction. 2004;99:1024–33.
doi: 10.1111/j.1360-0443.2004.00815.x
pubmed: 15265099
Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383:999–1008.
doi: 10.1016/S0140-6736(13)61752-3
pubmed: 24084292
Hoang TT, Qi C, Paul KC, Lee M, White JD, Richards M, et al. Epigenome-wide DNA methylation and pesticide use in the agricultural lung health study. Environ Health Perspect. 2021;129:97008.
doi: 10.1289/EHP8928
pubmed: 34516295
Holle R, Happich M, Löwel H, Wichmann HE, MONICA/KORA Study Group. KORA–a research platform for population based health research. Gesundheitswesen. 2005;67(Suppl 1):S19-25.
doi: 10.1055/s-2005-858235
pubmed: 16032513
Investigators FBPP. Multi-center genetic study of hypertension: the Family Blood Pressure Program (FBPP). Hypertension. 2002;39:3–9.
doi: 10.1161/hy1201.100415
Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JWR, Weir DR. Cohort profile: the Health and Retirement Study (HRS). Int J Epidemiol. 2014;43:576–85.
doi: 10.1093/ije/dyu067
pubmed: 24671021
pmcid: 3997380
Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002;156:871–81.
doi: 10.1093/aje/kwf113
pubmed: 12397006
Breteler MMB, Wolf H. THE Rhineland study: a novel platform for epidemiologic research into Alzheimer disease and related disordeRS. Alzheimer’s Dementia. 2014. https://doi.org/10.1016/j.jalz.2014.05.810 .
doi: 10.1016/j.jalz.2014.05.810
pubmed: 25282381
Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol. 2020;35:483–517.
doi: 10.1007/s10654-020-00640-5
pubmed: 32367290
pmcid: 7250962
Völzke H, Schössow J, Schmidt CO, Jürgens C, Richter A, Werner A, et al. Cohort profile update: the study of health in pomerania (SHIP). Int J Epidemiol. 2022;51:e372–83.
doi: 10.1093/ije/dyac034
pubmed: 35348705
National Institute on Alcohol Abuse and Alcoholism (NIAAA). What’s a Standard Drink Measurment? - Rethinking Drinking [Internet]. [cited 2024 Jun 26]. https://rethinkingdrinking.niaaa.nih.gov/how-much-too-much/whats-standard-drink
Ye Z, Zhu Y, Coffman DL. Variable selection for causal mediation analysis using LASSO-based methods. Stat Methods Med Res. 2021;30:1413–27.
doi: 10.1177/0962280221997505
pubmed: 33755518
pmcid: 8189011
The International Consortium of Blood Pressure (ICBP) 1000G Analyses, The CHD Exome+ Consortium, The ExomeBP Consortium, The T2D-GENES Consortium, The GoT2DGenes Consortium, The Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403–15.
Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.
doi: 10.1038/ng.384
pubmed: 19430479
pmcid: 2998712
CHD Exome+ Consortium, ExomeBP Consortium, GoT2DGenes Consortium, T2D-GENES Consortium, Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia, CKDGen Consortium, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;48:1162–70.
Primatesta P, Falaschetti E, Gupta S, Marmot MG, Poulter NR. Association between smoking and blood pressure: evidence from the health survey for england. Hypertension. 2001;37:187–93.
doi: 10.1161/01.HYP.37.2.187
pubmed: 11230269
Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9:436–47.
doi: 10.1161/CIRCGENETICS.116.001506
pubmed: 27651444
pmcid: 5267325
Vazquez AI, Bates DM, Rosa GJM, Gianola D, Weigel KA. Technical note: An R package for fitting generalized linear mixed models in animal breeding1. J Anim Sci. 2010;88:497–504.
doi: 10.2527/jas.2009-1952
pubmed: 19820058
van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev Genet. 2019;20:567–81.
doi: 10.1038/s41576-019-0137-z
pubmed: 31171865
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J Am Coll Cardiol. 2018;71:e127-248.
doi: 10.1016/j.jacc.2017.11.006
pubmed: 29146535
Loomba R, Hwang S-J, O’Donnell CJ, Ellison RC, Vasan RS, D’Agostino RB, et al. Parental obesity and offspring serum alanine and aspartate aminotransferase levels: the Framingham heart study. Gastroenterology. 2008;134:953–9.
doi: 10.1053/j.gastro.2008.01.037
pubmed: 18395076
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021.
Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. J Stat Soft [Internet]. 2010 [cited 2024 Jan 28];36. http://www.jstatsoft.org/v36/i03/
Champely S. pwr: basic functions for power analysis. 2020;1.3-0. https://CRAN.R-project.org/package=pwr
Zeileis A, Hothorn T. Diagnostic checking in regression relationships. R News. 2002;2.
Dugué P-A, Wilson R, Lehne B, Jayasekara H, Wang X, Jung C-H, et al. Alcohol consumption is associated with widespread changes in blood DNA methylation: analysis of cross-sectional and longitudinal data. Addict Biol. 2021;26:e12855.
doi: 10.1111/adb.12855
pubmed: 31789449
Ruppar T. Meta-analysis: How to quantify and explain heterogeneity? Eur J Cardiovasc Nurs. 2020;19:646–52.
doi: 10.1177/1474515120944014
pubmed: 32757621
Yin LK, Tong KS. Elevated alt and ast in an asymptomatic person: What the primary care doctor should do? Malays Fam Physician. 2009;4:98–9.
pubmed: 25606173
pmcid: 4267040
van Beek JHDA, de Moor MHM, Geels LM, Sinke MRT, de Geus EJC, Lubke GH, et al. The association of alcohol intake with γ-glutamyl transferase (GGT) levels: evidence for correlated genetic effects. Drug Alcohol Depend. 2014;134:99–105.
doi: 10.1016/j.drugalcdep.2013.09.016
pubmed: 24120856