Toward Efficient Modeling of Nonradiative Decay in Extended INVEST: Overcoming Computational Challenges in Quantum Dynamics Simulations.
Journal
The journal of physical chemistry letters
ISSN: 1948-7185
Titre abrégé: J Phys Chem Lett
Pays: United States
ID NLM: 101526034
Informations de publication
Date de publication:
29 Oct 2024
29 Oct 2024
Historique:
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
aheadofprint
Résumé
In recent years, an increasing number of fully organic molecules capable of thermally activated delayed fluorescence (TADF) have been reported, often with very small or even inverted singlet-triplet (INVEST) energy gaps. These molecules typically exhibit complex photophysics due to the close energy levels of multiple singlet and triplet states, which create various transition pathways toward emission. A predictive model for the rates of these transitions is thus essential for assessing the suitability of new materials for light-emitting devices. Quantum Dynamics (QD) calculations are ideal for this purpose, as they include quantum effects, without the limitations of first-order perturbative approaches, also allowing taking into account more than two electronic states at once. However, the huge computational demands of QD methodologies, especially for large molecules, currently limit their use as a standard tool. To address this problem, we here employ a strategy that allows us to include almost the whole set of the vibrational coordinates by selecting the key elements of the Hilbert space that significantly impact dynamics, thereby hugely reducing the computational burden. Application of this protocol to two relatively large INVEST molecules reveals that internal conversion in these systems is very fast, making indirect emissive pathways a possible channel for the population of the S
Identifiants
pubmed: 39470168
doi: 10.1021/acs.jpclett.4c02713
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM