Assessment of nitrogen and phosphorus losses due to erosion in compost-treated and non-treated vineyard soils: effect of rainfall intensity.
Compost amendment
Nutrient losses
Rainfall erosivity
Rainfall intensity
Soil loss
Soil water content
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
29 Oct 2024
29 Oct 2024
Historique:
received:
04
07
2024
accepted:
16
10
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Vineyards in Mediterranean areas suffer from significant soil degradation through erosion, due to rainfall and soil characteristics, as well as soil management practices. Previous studies pointed out the nutrient losses produced by erosion and the benefits that some management practices could have on reducing erosion. This research tried to evaluate the effect of events of different intensities and to assess whether the beneficial effect of compost amendment may pose a potential risk of nutrient loss and environmental pollution in particular under high-intensity events. The study compared soil and nutrient losses in compost-treated and non-treated vineyard soils after rainfall events of different intensities analyzed over 2 years in two vineyards. Runoff samples were collected by triplicate in treated and non-treated soils. Sediment and nitrogen and phosphorous concentrations in the runoff samples were analyzed. The results reveal a reduction in runoff rates and an increase in soil water content in compost-treated soils, which represents a benefit for rainfed vineyards. Both nitrogen and phosphorus losses depended on rainfall characteristics. Although for low intensities there were no significant differences in the amount of nutrient lost by runoff in both treated and non-treated soils, nitrogen and phosphorus losses were higher after high-intensity rainfall events in compost-treated soils. With the expected increase in high-intensity rainfall events associated with climate change in the Mediterranean region, organic amendments should be applied in several splits or incorporated into the soil to avoid increased nutrient loss to water bodies.
Identifiants
pubmed: 39472356
doi: 10.1007/s10661-024-13269-8
pii: 10.1007/s10661-024-13269-8
doi:
Substances chimiques
Phosphorus
27YLU75U4W
Nitrogen
N762921K75
Soil
0
Soil Pollutants
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1120Subventions
Organisme : Ministerio de Ciencia y Tecnología
ID : I+D+i REN2002-0432
Organisme : Universitat de Lleida
ID : Ajut pont 2012 research project of the UdL
Informations de copyright
© 2024. The Author(s).
Références
Ahmed, A. A., Leinweber, P., & Kühn, O. (2023). Advances in understanding the phosphate binding to soil constituents: A Computational Chemistry perspective. Science of the Total Environment, 887. https://doi.org/10.1016/j.scitotenv.2023.163692
Alison, L.E. (1965). Methods of soil analysis: Part 2 Chemical and microbiological properties, 9.2. Norman AG (Ed). American Society of Agronomy, Inc. pp. 1346–1365.
Allen, R. G., & Pereira, L. S. (2009). Estimating crop coefficients from fraction of ground cover and height. Irrigation Science, 28(1), 17–34. https://doi.org/10.1007/s00271-009-0182-z
doi: 10.1007/s00271-009-0182-z
An, J., Wang, L., Wu, Y., Song, H., & Du, X. (2023). Response of nutrient loss to natural erosive rainfall events under typical tillage practices of contour ridge system in the rocky mountain areas of Northern China. Environmental Science and Pollution Research, 30(36), 85446–85465. https://doi.org/10.1007/s11356-023-28333-y
doi: 10.1007/s11356-023-28333-y
Aranyos, J. T., Tomácsik, A., Makádi, M., Mészáros, J., & Blaskó, L. (2016). Changes in physical properties of sandy soil after long-term compost treatment. International Agrophysics, 30(3), 269–274. https://doi.org/10.1515/intag-2016-0003
doi: 10.1515/intag-2016-0003
Badalíková, B., Burg, P., Mašán, V., Prudil, J., Jobbágy, J., Čížková, A., … Vašinka, M. (2022). Deep placement of compost into vineyard soil affecting physical properties of soils, yield and quality of grapes. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137823
Bean, E. Z., & Dukes, M. D. (2015). Effect of amendment type and incorporation depth on runoff from compacted sandy soils. Journal of Irrigation and Drainage Engineering, 141(6), 1–11. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000840
doi: 10.1061/(ASCE)IR.1943-4774.0000840
Biddoccu, M., Opsi, F., & Cavallo, E. (2014). Relationship between runoff and soil losses with rainfall characteristics and long-term soil management practices in a hilly vineyard (Piedmont, NW Italy). Soil Science and Plant Nutrition, 60(1), 92–99. https://doi.org/10.1080/00380768.2013.862488
doi: 10.1080/00380768.2013.862488
Brown, S., & Cotton, M. (2011). Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compost Science and Utilization, 19(2), 87–96.
doi: 10.1080/1065657X.2011.10736983
Brown, C. L., & Foster, R. G. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE, 30(2), 379–686. https://doi.org/10.13031/2013.31957
doi: 10.13031/2013.31957
Burg, P., Masan, V., Cizkova, A., & Visacki, V. (2018). Evaluation of impact of cover materials on reduction of water erosion of soil in vineyards. Engineering for Rural Development, 17, 658–664. https://doi.org/10.22616/ERDev2018.17.N312
doi: 10.22616/ERDev2018.17.N312
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Carter, D. L. (1982). Salinity and plant productivity. In M. Rechcigl (Ed.), Handbook of Agricultural Productivity (p. 19). CRC Press.
Corti, G., Cavallo, E., Cocco, S., Biddoccu, M., Brecciaroli, G., & Agnelli, A. (2011). Evaluation of erosion intensity and some of its consequences in vineyards from two hilly environments under a Mediterranean type of climate, Italy. In Soil Erosion Issues in Agriculture (p. 334). https://doi.org/10.5772/25130
Cresswell, H. P., & Hamilton, G. J., et al. (2002). Bulk density and pore space relations. In N. J. McKenzie (Ed.), Soil Physical Measurement and Interpretation for Land Evaluation (pp. 35–58). Australian Soil and Land Survey Handbook.
De Santisteban, L. M., Casalí, J., & López, J. J. (2006). Assessing soil erosion rates in cultivated areas of Navarre (Spain). Earth Surface Processes and Landforms, 31(4), 487–506. https://doi.org/10.1002/esp.1281
doi: 10.1002/esp.1281
Duddigan, S., Alexander, P. D., Shaw, L. J., & Collins, C. D. (2021). Effects of repeated application of organic soil amendments on horticultural soil physicochemical properties, nitrogen budget and yield. Horticulturae, 7(10). https://doi.org/10.3390/horticulturae7100371
Dugan, I., Pereira, P., Barcelo, D., Telak, L. J., Filipovic, V., Filipovic, L., … Bogunovic, I. (2022). Agriculture management and seasonal impact on soil properties, water, sediment and chemicals transport in a hazelnut orchard (Croatia). Science of the Total Environment, 839. https://doi.org/10.1016/j.scitotenv.2022.156346
Fares, A., Abbas, F., Ahmad, A., Deenik, J. L., & Safeeq, M. (2008). Response of selected soil physical and hydrologic properties to manure amendment rates, levels, andtypes. Soil Science, 173(7), 522–533. https://doi.org/10.1097/SS.0b013e318182b063
doi: 10.1097/SS.0b013e318182b063
Ferreira, C. S. S., Keizer, J. J., Santos, L. M. B., Serpa, D., Silva, V., Cerqueira, M., … Abrantes, N. (2018). Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agriculture, Ecosystems and Environment, 256, 184–193. https://doi.org/10.1016/j.agee.2018.01.015
García-Ruiz, J. M. (2010). The effects of land uses on soil erosion in Spain: A review (Vol. 81, pp. 1–11). Vol. 81, pp. 1–11. https://doi.org/10.1016/j.catena.2010.01.001
Garnier, M., Pappagallo, G., & Holman, I. P. (2024). Sediment and phosphorus transport during flood events in a Mediterranean temporary river. Environmental Earth Sciences, 83(7). https://doi.org/10.1007/s12665-024-11524-2
Gee, G.W., & Bauder, J.W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1. Agron. Monogr. 9 (2nd ed., pp. 383–411). ASA and SSSA.
Grizzetti, B., Bouraoui, F., Billen, G., van Grinsven, H., Cardoso, A. C., Thieu, V., Garnier, J., Curtis, C., Howarth, R., & Johnes, P. (2011). Nitrogen as a threat to European water quality. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, & B. Grizzetti (Eds.), Ch. 17 European Nitrogen Assessment. Cambridge University Press.
Jordan, P., Arnscheidt, A., McGrogan, H., & McCormick, S. (2007). Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser. Hydrology and Earth System Sciences, 11(1), 372–381. https://doi.org/10.5194/hess-11-372-2007
doi: 10.5194/hess-11-372-2007
Korboulewsky, N., Dupouyet, S., & Bonin, G. (2002). Environmental risks of applying sewage sludge compost to vineyards: Carbon, heavy metals, nitrogen, and phosphorus accumulation. Journal of Environmental Quality, 31(5), 1522–1537.
doi: 10.2134/jeq2002.1522
Maltais-Landry, G., Scow, K., Brennan, E., & Vitousek, P. (2015). Long-term effects of compost and cover crops on soil phosphorus in two California agroecosystems. Soil Science Society of America Journal, 79(2), 688–697. https://doi.org/10.2136/sssaj2014.09.0369
doi: 10.2136/sssaj2014.09.0369
Misopolinos, N., & Zalidis, G. (2002). Status and trends concerning the impacts of agricultural practices on water solute flow regulation and partition in the Mediterranean basin. In J. L. Rubio, R. P. C. Morgan, S. Asins, & V. Andreu (Eds.), Man and Soil at the third Millennium. Vol. I (pp. 89–97). Geoforma Ed.
Morlat, R., & Symoneaux, R. (2008). Long-term additions of organic amendments in a Loire Valley vineyard. I. Effects on properties of a calcareous sandy soil. American Journal of Enology and Viticulture, 59(4), 353–363. https://doi.org/10.5344/ajev.2008.59.4.353
doi: 10.5344/ajev.2008.59.4.353
Murphy, G., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.
doi: 10.1016/S0003-2670(00)88444-5
Napoli, M., Marta, A. D., Zanchi, C. A., & Orlandini, S. (2017). Assessment of soil and nutrient losses by runoff under different soil management practices in an Italian hilly vineyard. Soil and Tillage Research, 168, 71–80. https://doi.org/10.1016/j.still.2016.12.011
doi: 10.1016/j.still.2016.12.011
Osmond, D. L., Shober, A. L., Sharpley, A. N., Duncan, E. W., & Hoag, D. L. K. (2019). Increasing the effectiveness and adoption of agricultural phosphorus management strategies to minimize water quality impairment. Journal of Environmental Quality, 48(5), 1204–1217. https://doi.org/10.2134/jeq2019.03.0114
doi: 10.2134/jeq2019.03.0114
Pierzynski, G. M. (2000). Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Cooperative Series Bulletin No. # 396. North Carolina S. Univ.
Raclot, D., Le Bissonnais, Y., Louchart, X., Andrieux, P., Moussa, R., & Voltz, M. (2009). Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agriculture, Ecosystems & Environment, 134(3), 201–210. https://doi.org/10.1016/j.agee.2009.06.019
doi: 10.1016/j.agee.2009.06.019
Ramos, M. C., & Durán, B. (2014). Assessment of rainfall erosivity and its spatial and temporal variabilities: Case study of the Penedès area (NE Spain). CATENA, 123, 135–147. https://doi.org/10.1016/j.catena.2014.07.015
doi: 10.1016/j.catena.2014.07.015
Ramos, M. C., & Martínez-Casasnovas, J. A. (2006). Erosion rates and nutrient losses affected by composted cattle manure application in vineyard soils of NE Spain. CATENA, 68(2–3), 177–185. https://doi.org/10.1016/j.catena.2006.04.004
doi: 10.1016/j.catena.2006.04.004
Ramos, M. C., & Martínez-Casasnovas, J. A. (2009). Impacts of annual precipitation extremes on soil and nutrient losses in vineyards of NE Spain. Hydrological Processes, 23(2), 224–235. https://doi.org/10.1002/hyp.7130
doi: 10.1002/hyp.7130
Ramos, M. C., Nacci, S., & Pla, I. (2000). Soil sealing and its influence on erosion rates for some soils in the Mediterranean area. Soil Science, 165(5), 398–403. https://doi.org/10.1097/00010694-200005000-00003
doi: 10.1097/00010694-200005000-00003
Ramos, M. C., Lizaga, I., Gaspar, L., Quijano, L., & Navas, A. (2019). Effects of rainfall intensity and slope on sediment, nitrogen and phosphorus losses in soils with different use and soil hydrological properties. Agricultural Water Management, 226. https://doi.org/10.1016/j.agwat.2019.105789
Ramos, M. C. (2017). Effects of compost amendment on the available soil water and grape yield in vineyards planted after land levelling. Agricultural Water Management, 191. https://doi.org/10.1016/j.agwat.2017.05.013
Rasoulzadeh, A., & Yaghoubi, A. (2010). Effect of cattle manure on soil physical properties on a sandy clay loam soil in North-West Iran. Food, Agriculture and Environment, 8(2), 976–979.
Reimer, M., Kopp, C., Hartmann, T., Zimmermann, H., Ruser, R., Schulz, R., Müller, T., & Möller, K. (2023). Assessing long term effects of compost fertilization on soil fertility and nitrogen mineralization rate. Journal of Plant Nutrition and Soil Science, 186(2), 217–233. https://doi.org/10.1002/jpln.202200270
doi: 10.1002/jpln.202200270
Ross, D. S., Wemple, B. C., Willson, L. J., Balling, C. M., Underwood, K. L., & Hamshaw, S. D. (2019). Impact of an extreme storm event on river corridor bank erosion and phosphorus mobilization in a mountainous watershed in the northeastern United States. Journal of Geophysical Research: Biogeosciences, 124(1), 18–32. https://doi.org/10.1029/2018JG004497
doi: 10.1029/2018JG004497
Sandström, S., Futter, M. N., Kyllmar, K., Bishop, K., O’Connell, D. W., & Djodjic, F. (2020). Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Science of the Total Environment, 711. https://doi.org/10.1016/j.scitotenv.2019.134616
Sharpley, A. N., Mcdowell, R. W., & Kleinman, P. J. A. (2001). Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant and Soil, 237(2), 287–307. https://doi.org/10.1023/A:1013335814593
doi: 10.1023/A:1013335814593
Sharpley, A. N., Kleinman, P. J. A., Heathwaite, A. L., Gburek, W. J., Folmar, G. J., & Schmidt, J. P. (2008). Phosphorus loss from an agricultural watershed as a function of storm size. Journal of Environmental Quality, 37(2), 362–368. https://doi.org/10.2134/jeq2007.0366
doi: 10.2134/jeq2007.0366
Shi, P., & Schulin, R. (2018). Erosion-induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management. Science of the Total Environment, 618, 210–218. https://doi.org/10.1016/j.scitotenv.2017.11.060
doi: 10.1016/j.scitotenv.2017.11.060
Shrestha, A., Green, M. B., Boyer, J. N., & Doner, L. A. (2020). Effects of storm events on phosphorus concentrations in a forested New England stream. Water, Air, and Soil Pollution, 231(7). https://doi.org/10.1007/s11270-020-04738-0
Sishu, F. K., Bekele, A. M., Schmitter, P., Tilahun, S. A., & Steenhuis, T. S. (2021). Phosphorus export from two contrasting rural watersheds in the (sub) humid Ethiopian highlands. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.762703
Soil Survey Staff (SSS). (2022). Keys to soil taxonomy (13th ed.). Washington, DC: USDA-Natural Resources Conservation Service.
Sparks, D.L., Page, A.L., Helmke, P.A., & Loeppert, R.H. (eds). (1996). Methods of soil analysis part 3—Chemical methods. SSSA Book Ser. 5.3. SSSA, ASA.
Taylor, P. G., Wieder, W. R., Weintraub, S., Cohen, S., Cleveland, C. C., Townsend, A. R., & Templer, P. H. (2015). Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed. Ecology, 96(5), 1229–1241. https://doi.org/10.1890/13-1418.1
doi: 10.1890/13-1418.1
Truman, C. C., Potter, T. L., Nuti, R. C., Franklin, D. H., & Bosch, D. D. (2011). Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols. Agricultural Water Management, 98(8), 1189–1196. https://doi.org/10.1016/j.agwat.2011.03.001
doi: 10.1016/j.agwat.2011.03.001
USEPA. (1986). Quality criteria for water. EPA-440/5–86–001. Washington, DC., U.S. EPA.
Wang, F., Sun, Z., Zheng, S., Yu, J., & Liang, X. (2018). An integrated approach to identify critical source areas of agricultural nonpoint-source pollution at the watershed scale. Journal of Environmental Quality, 47(4), 922–929. https://doi.org/10.2134/jeq2017.12.0469
doi: 10.2134/jeq2017.12.0469
Wang, G., Li, Z., Zhang, J., Lu, Y., & Chen, Z. (2019). Loss rules of total nitrogen and total phosphorus in the soils of southwest mountains in Henan province, China under artificial rainfall. Applied Ecology and Environmental Research, 17(1), 451–461. https://doi.org/10.15666/aeer/1701_451461
doi: 10.15666/aeer/1701_451461
Wang, L., Zheng, F., Hu, W., Zhang, X. J., & Shi, H. (2023a). Interactive effects of rainfall intensity, kinetic energy and antecedent soil moisture regime on splash erosion in the Ultisol region of South China. CATENA, 222, 106863. https://doi.org/10.1016/j.catena.2022.106863
doi: 10.1016/j.catena.2022.106863
Wang, R., Zhang, J., Cai, C., et al. (2023b). 2023 Mechanism of nitrogen loss driven by soil and water erosion in water source areas. Journal of Forest Research, 34, 1985–1995. https://doi.org/10.1007/s11676-023-01640-3
doi: 10.1007/s11676-023-01640-3
Weindorf, D. C., Zartman, R. E., & Allen, B. L. (2006). Effect of compost on soil properties in Dallas, Texas. Compost Science & Utilization, 14(1), 59–67. https://doi.org/10.1080/1065657X.2006.10702264
doi: 10.1080/1065657X.2006.10702264
White, S. A., Santos, I. R., & Hessey, S. (2018). Nitrate loads in sub-tropical headwater streams driven by intensive horticulture. Environmental Pollution, 243, 1036–1046. https://doi.org/10.1016/j.envpol.2018.08.074
doi: 10.1016/j.envpol.2018.08.074
Yang, R., Zheng, J., Li, G., Huang, Y., Wang, J., & Qiu, F. (2023). Effects of rainfall characteristics and sugarcane growth stage on soil and nitrogen losses. Environmental Science and Pollution Research, 30(37), 87575–87587. https://doi.org/10.1007/s11356-023-28618-2
doi: 10.1007/s11356-023-28618-2
Yu, H., Ding, W., Luo, J., Geng, R., & Cai, Z. (2012). Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research, 124, 170–177. https://doi.org/10.1016/j.still.2012.06.011
doi: 10.1016/j.still.2012.06.011
Zuazo, V. H. D., Tejero, I. G., Martínez, J. R. F., & Fernández, J. L. M. (2011). Soil erosion: Causes, processes and effects. In A. J. Fournier (Ed.), Soil Erosion: Causes, Processes and Effects (pp. 1–34). Nova Science Publishers.