Genome-wide screen of Mycobacterium tuberculosis-infected macrophages revealed GID/CTLH complex-mediated modulation of bacterial growth.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
29 Oct 2024
Historique:
received: 23 05 2024
accepted: 18 10 2024
medline: 30 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

The eukaryotic Glucose Induced Degradation/C-Terminal to LisH (GID/CTLH) complex is a highly conserved E3 ubiquitin ligase involved in a broad range of biological processes. However, a role of this complex in host anti-microbial defenses has not been described. We exploited Mycobacterium tuberculosis (Mtb) induced cytotoxicity in macrophages in a FACS based CRISPR genetic screen to identify host determinants of intracellular Mtb growth restriction. Our screen identified 5 (GID8, YPEL5, WDR26, UBE2H, MAEA) of the 12 predicted members of the GID/CTLH complex as determinants of intracellular growth of both Mtb and Salmonella serovar Typhimurium. We show that the anti-microbial properties of the GID/CTLH complex knockout macrophages are mediated by enhanced GABAergic signaling, activated AMPK, increased autophagic flux and resistance to Mtb induced necrotic cell death. Meanwhile, Mtb isolated from GID/CTLH knockout macrophages are nutritionally starved and oxidatively stressed. Our study identifies the GID/CTLH complex activity as broadly suppressive of host anti-microbial responses against intracellular bacterial infections.

Identifiants

pubmed: 39472457
doi: 10.1038/s41467-024-53637-z
pii: 10.1038/s41467-024-53637-z
doi:

Substances chimiques

Ubiquitin-Protein Ligases EC 2.3.2.27

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9322

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI155319
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI162598
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI172433
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : T32AI007349
Organisme : U.S. Department of Health & Human Services | NIH | NIH Office of the Director (OD)
ID : OD032135

Informations de copyright

© 2024. The Author(s).

Références

WHO. Global tuberculosis report 2023. World Health Organisation, Geneva, Switzerland (2023).
Behr, M. A., Edelstein, P. H. & Ramakrishnan, L. Rethinking the burden of latent tuberculosis to reprioritize research. Nat. Microbiol. 9, 1157–1158 (2024).
pubmed: 38671272 doi: 10.1038/s41564-024-01683-0
Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).
pubmed: 8303277 doi: 10.1126/science.8303277
Upadhyay, S., Mittal, E. & Philips, J. A. Tuberculosis and the art of macrophage manipulation. Pathog. Dis. 76, fty037 (2018).
pubmed: 29762680 pmcid: 6251593 doi: 10.1093/femspd/fty037
Huang, L., Nazarova, E. V. & Russell, D. G. Mycobacterium tuberculosis: Bacterial fitness within the host macrophage. Microbiol. Spectr. 7, 10.1128 (2019).
doi: 10.1128/microbiolspec.BAI-0001-2019
Russell, D. G. et al. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8, 68–76 (2010).
pubmed: 20638643 pmcid: 2929656 doi: 10.1016/j.chom.2010.06.002
Wilburn, K. M., Fieweger, R. A. & VanderVen, B. C. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog. Dis. 76, fty021 (2018).
pubmed: 29718271 pmcid: 6251666 doi: 10.1093/femspd/fty021
Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013).
pubmed: 24043763 pmcid: 3782041 doi: 10.1084/jem.20131199
Guilliams, M. & Scott, C. L. Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol. 17, 451–460 (2017).
pubmed: 28461703 doi: 10.1038/nri.2017.42
Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018).
pubmed: 29500179 pmcid: 5881470 doi: 10.1084/jem.20172020
Behar, S. M. et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 4, 279–287 (2011).
pubmed: 21307848 pmcid: 3155700 doi: 10.1038/mi.2011.3
Martin, C. J. et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12, 289–300 (2012).
pubmed: 22980326 pmcid: 3517204 doi: 10.1016/j.chom.2012.06.010
Sun, J. et al. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nat. Struct. Mol. Biol. 22, 672–678 (2015).
pubmed: 26237511 pmcid: 4560639 doi: 10.1038/nsmb.3064
Chen, M., Gan, H. & Remold, H. G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176, 3707–3716 (2006).
pubmed: 16517739 doi: 10.4049/jimmunol.176.6.3707
van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).
pubmed: 17604718 doi: 10.1016/j.cell.2007.05.059
Simeone, R. et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 8, e1002507 (2012).
pubmed: 22319448 pmcid: 3271072 doi: 10.1371/journal.ppat.1002507
Romagnoli, A. et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8, 1357–1370 (2012).
pubmed: 22885411 pmcid: 3442882 doi: 10.4161/auto.20881
Shah, S. et al. Cutting edge: Mycobacterium tuberculosis but not nonvirulent Mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. J. Immunol. 191, 3514–3518 (2013).
pubmed: 23997220 doi: 10.4049/jimmunol.1301331
Zhang, L., Jiang, X., Pfau, D., Ling, Y. & Nathan, C. F. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J. Exp. Med. 218, e20200887 (2021).
pubmed: 33125053 doi: 10.1084/jem.20200887
Lai, Y. et al. Illuminating host-mycobacterial interactions with genome-wide CRISPR knockout and CRISPRi screens. Cell Syst. 11, 239–251.e237 (2020).
pubmed: 32970993 doi: 10.1016/j.cels.2020.08.010
Mahamed, D. et al. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. Elife 6, e22028 (2017).
pubmed: 28130921 pmcid: 5319838 doi: 10.7554/eLife.22028
Kiritsy, M. C. et al. Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. Elife 10, e65109 (2021).
pubmed: 34726598 pmcid: 8598164 doi: 10.7554/eLife.65109
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).
pubmed: 26780180 pmcid: 4744125 doi: 10.1038/nbt.3437
Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).
pubmed: 30710114 pmcid: 6862721 doi: 10.1038/s41596-018-0113-7
Singh, P. & Subbian, S. Harnessing the mTOR pathway for tuberculosis treatment. Front. Microbiol. 9, 70 (2018).
pubmed: 29441052 pmcid: 5797605 doi: 10.3389/fmicb.2018.00070
Kim, J. & Guan, K.-L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 21, 63–71 (2019).
pubmed: 30602761 doi: 10.1038/s41556-018-0205-1
Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).
pubmed: 15607973 doi: 10.1016/j.cell.2004.11.038
Singhal, A. et al. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 6, 263ra159 (2014).
pubmed: 25411472 doi: 10.1126/scitranslmed.3009885
Theriault, M. E. et al. Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Commun. Biol. 5, 685 (2022).
pubmed: 35810253 pmcid: 9271047 doi: 10.1038/s42003-022-03650-z
Lampert, F. et al. The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. eLife 7, e35528 (2018).
pubmed: 29911972 pmcid: 6037477 doi: 10.7554/eLife.35528
Kobayashi, N. et al. RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8alpha and ARMC8beta are components of the CTLH complex. Gene 396, 236–247 (2007).
pubmed: 17467196 doi: 10.1016/j.gene.2007.02.032
Santt, O. et al. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol. Biol. Cell 19, 3323–3333 (2008).
pubmed: 18508925 pmcid: 2488282 doi: 10.1091/mbc.e08-03-0328
Chen, S. J., Wu, X., Wadas, B., Oh, J. H. & Varshavsky, A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355, eaal3655 (2017).
pubmed: 28126757 pmcid: 5457285 doi: 10.1126/science.aal3655
Maitland, M. E. R., Lajoie, G. A., Shaw, G. S. & Schild-Poulter, C. Structural and functional insights into GID/CTLH E3 ligase complexes. Int. J. Mol. Sci. 23, 5863 (2022).
pubmed: 35682545 pmcid: 9180843 doi: 10.3390/ijms23115863
Wang, L. et al. The Ran-binding protein RanBPM can depress the NF-κB pathway by interacting with TRAF6. Mol. Cell Biochem. 359, 83–94 (2012).
pubmed: 21805090 doi: 10.1007/s11010-011-1002-3
Subramanian, M. et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest. 124, 1296–1308 (2014).
pubmed: 24509082 pmcid: 3934164 doi: 10.1172/JCI72051
Conant, D. et al. Inference of CRISPR edits from Sanger trace data. CRISPR J. 5, 123–130 (2022).
pubmed: 35119294 doi: 10.1089/crispr.2021.0113
Wu, J. et al. High-throughput assay to phenotype Salmonella enterica Typhimurium association, invasion, and replication in macrophages. J. Vis. Exp. e51759 (2014).
Eade, C. R. et al. Salmonella pathogenicity Island 1 Is expressed in the chicken intestine and promotes bacterial proliferation. Infect. Immun. 87, e00503–e00518 (2019).
pubmed: 30396895 doi: 10.1128/IAI.00503-18
Freund, E. C. et al. Efficient gene knockout in primary human and murine myeloid cells by non-viral delivery of CRISPR-Cas9. J. Exp. Med. 217, e20191692 (2020).
pubmed: 32357367 pmcid: 7336301 doi: 10.1084/jem.20191692
Maitland, M. E. R., Kuljanin, M., Wang, X., Lajoie, G. A. & Schild-Poulter, C. Proteomic analysis of ubiquitination substrates reveals a CTLH E3 ligase complex-dependent regulation of glycolysis. FASEB J. 35, e21825 (2021).
pubmed: 34383978 doi: 10.1096/fj.202100664R
Liu, H. et al. The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. Autophagy 16, 1618–1634 (2020).
pubmed: 31795790 doi: 10.1080/15548627.2019.1695399
Shi, L., Jiang, Q., Bushkin, Y., Subbian, S. & Tyagi, S. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection. mBio 10, e02550–18 (2019).
pubmed: 30914513 pmcid: 6437057 doi: 10.1128/mBio.02550-18
Gleeson, L. E. et al. Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J. Immunol. 196, 2444–2449 (2016).
pubmed: 26873991 doi: 10.4049/jimmunol.1501612
Cumming, B. M., Addicott, K. W., Adamson, J. H. & Steyn, A. J. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. Elife 7, e39169 (2018).
pubmed: 30444490 pmcid: 6286123 doi: 10.7554/eLife.39169
Garcia, D. & Shaw, R. J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800 (2017).
pubmed: 28622524 pmcid: 5553560 doi: 10.1016/j.molcel.2017.05.032
Pisu, D., Huang, L., Grenier, J. K. & Russell, D. G. Dual RNA-seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. Cell Rep. 30, 335–350.e334 (2020).
pubmed: 31940480 pmcid: 7032562 doi: 10.1016/j.celrep.2019.12.033
Donovan, A. et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1, 191–200 (2005).
pubmed: 16054062 doi: 10.1016/j.cmet.2005.01.003
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778 pmcid: 8454663
Malik, Z. A., Denning, G. M. & Kusner, D. J. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191, 287–302 (2000).
pubmed: 10637273 pmcid: 2195750 doi: 10.1084/jem.191.2.287
Stanley, S. A. et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog. 10, e1003946 (2014).
pubmed: 24586159 pmcid: 3930586 doi: 10.1371/journal.ppat.1003946
Heisler, F. F. et al. Muskelin regulates actin filament- and microtubule-based GABA(A) receptor transport in neurons. Neuron 70, 66–81 (2011).
pubmed: 21482357 pmcid: 3101366 doi: 10.1016/j.neuron.2011.03.008
Kim, J. K. et al. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat. Commun. 9, 4184 (2018).
pubmed: 30305619 pmcid: 6180030 doi: 10.1038/s41467-018-06487-5
Krithika, R. et al. A genetic locus required for iron acquisition in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 2069–2074 (2006).
pubmed: 16461464 pmcid: 1413701 doi: 10.1073/pnas.0507924103
Pandey, S. D. et al. Iron-regulated protein HupB of Mycobacterium tuberculosis positively regulates siderophore biosynthesis and is essential for growth in macrophages. J. Bacteriol. 196, 1853–1865 (2014).
pubmed: 24610707 pmcid: 4010995 doi: 10.1128/JB.01483-13
Wipperman, M. F., Yang, M., Thomas, S. T. & Sampson, N. S. Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family. J. Bacteriol. 195, 4331–4341 (2013).
pubmed: 23836861 pmcid: 3807453 doi: 10.1128/JB.00502-13
Lack, N. A. et al. Characterization of a carbon-carbon hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism. J. Biol. Chem. 285, 434–443 (2010).
pubmed: 19875455 doi: 10.1074/jbc.M109.058081
Forrellad, M. A. et al. Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis 94, 170–177 (2014).
pubmed: 24440549 doi: 10.1016/j.tube.2013.12.005
Nazarova, E. V. et al. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. Elife 6, e26969 (2017).
pubmed: 28708968 pmcid: 5487216 doi: 10.7554/eLife.26969
Lott, J. S. The tryptophan biosynthetic pathway is essential for Mycobacterium tuberculosis to cause disease. Biochem. Soc. Trans. 48, 2029–2037 (2020).
pubmed: 32915193 pmcid: 7609029 doi: 10.1042/BST20200194
Zhang, Y. J. et al. Tryptophan biosynthesis protects Mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308 (2013).
pubmed: 24315099 pmcid: 3902092 doi: 10.1016/j.cell.2013.10.045
Tews, I. et al. The structure of a pH-sensing Mycobacterial adenylyl cyclase holoenzyme. Science 308, 1020–1023 (2005).
pubmed: 15890882 doi: 10.1126/science.1107642
Bush, M. J. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol. Microbiol. 110, 663–676 (2018).
pubmed: 30179278 pmcid: 6282962 doi: 10.1111/mmi.14117
Chen, Z. et al. Mycobacterial WhiB6 differentially regulates ESX-1 and the Dos regulon to modulate granuloma formation and virulence in Zebrafish. Cell Rep. 16, 2512–2524 (2016).
pubmed: 27545883 doi: 10.1016/j.celrep.2016.07.080
Bosserman, R. E. et al. WhiB6 regulation of ESX-1 gene expression is controlled by a negative feedback loop in Mycobacterium marinum. Proc. Natl. Acad. Sci. USA 114, E10772–e10781 (2017).
pubmed: 29180415 pmcid: 5740670 doi: 10.1073/pnas.1710167114
Kudhair, B. K. et al. Structure of a Wbl protein and implications for NO sensing by M. tuberculosis. Nat. Commun. 8, 2280 (2017).
pubmed: 29273788 pmcid: 5741622 doi: 10.1038/s41467-017-02418-y
Khan, S. et al. Toxin-Antitoxin system of Mycobacterium tuberculosis: roles beyond stress sensor and growth regulator. Tuberculosis (Edinb.) 143, 102395 (2023).
pubmed: 37722233 doi: 10.1016/j.tube.2023.102395
Levi, G. & Raiteri, M. Modulation of gamma-aminobutyric acid transport in nerve endings: role of extracellular gamma-aminobutyric acid and of cationic fluxes. Proc. Natl Acad. Sci. USA 75, 2981–2985 (1978).
pubmed: 351622 pmcid: 392691 doi: 10.1073/pnas.75.6.2981
Weidberg, H. et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792–1802 (2010).
pubmed: 20418806 pmcid: 2885923 doi: 10.1038/emboj.2010.74
Wei, Q. et al. MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nat. Commun. 12, 2522 (2021).
pubmed: 33947846 pmcid: 8097058 doi: 10.1038/s41467-021-22749-1
Atabakhsh, E., Bryce, D. M., Lefebvre, K. J. & Schild-Poulter, C. RanBPM has proapoptotic activities that regulate cell death pathways in response to DNA damage. Mol. Cancer Res. 7, 1962–1972 (2009).
pubmed: 19996306 doi: 10.1158/1541-7786.MCR-09-0098
Liu, T., Roh, S. E., Woo, J. A., Ryu, H. & Kang, D. E. Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis. 4, e476 (2013).
pubmed: 23348590 pmcid: 3563991 doi: 10.1038/cddis.2012.203
Hawn, T. R., Matheson, A. I., Maley, S. N. & Vandal, O. Host-directed therapeutics for tuberculosis: can we harness the host? Microbiol. Mol. Biol. Rev. 77, 608–627 (2013).
pubmed: 24296574 pmcid: 3973381 doi: 10.1128/MMBR.00032-13
Young, C., Walzl, G. & Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 13, 190–204 (2020).
pubmed: 31772320 doi: 10.1038/s41385-019-0226-5
Ye, Y., Tang, X., Sun, Z. & Chen, S. Upregulated WDR26 serves as a scaffold to coordinate PI3K/ AKT pathway-driven breast cancer cell growth, migration, and invasion. Oncotarget 7, 17854–17869 (2016).
pubmed: 26895380 pmcid: 4951255 doi: 10.18632/oncotarget.7439
Huffman, N., Palmieri, D. & Coppola, V. The CTLH complex in cancer cell plasticity. J. Oncol. 2019, 4216750 (2019).
pubmed: 31885576 pmcid: 6907057 doi: 10.1155/2019/4216750
Jiang, G. et al. A novel biomarker ARMc8 promotes the malignant progression of ovarian cancer. Hum. Pathol. 46, 1471–1479 (2015).
pubmed: 26232863 doi: 10.1016/j.humpath.2015.06.004
Dartois, V. A. & Rubin, E. J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol. 20, 685–701 (2022).
pubmed: 35478222 pmcid: 9045034 doi: 10.1038/s41579-022-00731-y
Sukumar, N., Tan, S., Aldridge, B. B. & Russell, D. G. Exploitation of Mycobacterium tuberculosis reporter strains to probe the impact of vaccination at sites of infection. PLoS Pathog. 10, e1004394 (2014).
pubmed: 25233380 pmcid: 4169503 doi: 10.1371/journal.ppat.1004394
Dhandayuthapani, S. et al. Green fluorescent protein as a marker for gene expression and cell biology of Mycobacterial interactions with macrophages. Mol. Microbiol. 17, 901–912 (1995).
pubmed: 8596439 doi: 10.1111/j.1365-2958.1995.mmi_17050901.x
Andreu, N. et al. Optimisation of bioluminescent reporters for use with Mycobacteria. PLoS One 5, e10777 (2010).
pubmed: 20520722 pmcid: 2875389 doi: 10.1371/journal.pone.0010777
Nazarova, E. V. & Russell, D. G. Growing and handling of Mycobacterium tuberculosis for macrophage infection assays. Methods Mol. Biol. 1519, 325–331 (2017).
pubmed: 27815890 pmcid: 5909967 doi: 10.1007/978-1-4939-6581-6_22
Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 (Bethesda) 7, 2719–2727 (2017).
pubmed: 28655737 doi: 10.1534/g3.117.041277
Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).
pubmed: 25748654 pmcid: 4380877 doi: 10.1016/j.cell.2015.02.038
Pisu, D., Huang, L., Rin Lee, B. N., Grenier, J. K. & Russell, D. G. Dual RNA-sequencing of Mycobacterium tuberculosis-infected cells from a murine infection model. STAR Protoc. 1, 100123 (2020).
pubmed: 33377017 pmcid: 7756974 doi: 10.1016/j.xpro.2020.100123

Auteurs

Nelson V Simwela (NV)

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

Luana Johnston (L)

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

Paulina Pavinski Bitar (PP)

Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA.

Eleni Jaecklein (E)

Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.

Craig Altier (C)

Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA.

Christopher M Sassetti (CM)

Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.

David G Russell (DG)

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA. dgr8@cornell.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH