Miniaturized circularly polarized wearable array antenna for medical device applications.
Array antenna
Circular polarization
ISM band
Medical application
Patch antenna
Sequential-phase feed network
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 10 2024
29 10 2024
Historique:
received:
06
05
2024
accepted:
27
09
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Antenna miniaturization is essential for healthcare applications, and numerous studies have tackled the challenge of presenting miniaturized, reliable designs while maintaining performance. This paper presents a small circularly polarized (CP) sequential wearable array antenna with overall dimensions of only 110 mm × 95 mm × 1.8 mm. It comprises four novel designs of circular-shaped elements arranged sequentially in an array configuration measured only 24 mm×24 mm×1 mm. It is fed by a separate cascade feeding network incorporating a single rat-race and two branch-line couplers. The antenna is designed for medical device applications within the 2.4 GHz Industrial Scientific Medical (ISM) frequency band. The proposed design is fabricated and experimentally tested, demonstrating wide impedance bandwidths of 21.24% (2.2-2.72 GHz) and an Axial Ratio (AR) bandwidth (AR < 3 dB) covering the entire 2.4 GHz ISM frequency band. At 2.43 GHz, the antenna achieves a gain of -14.9 dBi. Both simulation and experimental results confirm excellent performance in impedance matching, gain pattern, and circular polarization, making it promising for wearable wireless communication in medical applications. The link margin was calculated, and the specific absorption rate of the antenna was analyzed, the result revealing that it aligns with the safety limits of IEEE C95.1-1999 standards.
Identifiants
pubmed: 39472595
doi: 10.1038/s41598-024-74685-x
pii: 10.1038/s41598-024-74685-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26036Informations de copyright
© 2024. The Author(s).
Références
Srinath, B. S. P., Jammalamadaka, K., Hindodi, A. & A. & Advancement of existing healthcare setting through tele-medicine: The challenges faced in India. Int. J. Community Med. Public. Health. 8, 502 (2020).
doi: 10.18203/2394-6040.ijcmph20205743
Nikita & Konstantina Handbook of Biomedical Telemetry. (2014).
Omran, M. M., Mutashar, S. & Ezzulddin, A. Design of an (8×8) mm2 efficient inductive power link for medical applications. in 2nd International Conference on Engineering Technology and its Applications, IICETA 2019 61–66 (Institute of Electrical and Electronics Engineers Inc., 2019). https://doi.org/10.1109/IICETA47481.2019.9012992
Babaei, N., Hannani, N., Dabanloo, N. J. & Bahadori, S. A. Systematic review of the use of commercial wearable activity trackers for monitoring recovery in individuals undergoing total hip replacement surgery. Cyborg. Bionic Syst. (2022). https://doi.org/10.34133/2022/9794641
Ali, S. M. et al. Recent advances of wearable antennas in materials, fabrication methods, designs, and their applications: State-of-the-art. Micromachines. (2020). https://doi.org/10.3390/mi11100888
Hashim, F. F., Mahadi, W. N. L. B., Latef, A., Bin, T. & Othman, M. Bin. Key factors in the implementation of wearable antennas for WBNs and ISM applications: A review WBNs and ISM applications: A review. Electronics (Switzerland). (2022). https://doi.org/10.3390/electronics11152470
Wang, F. Assembly Conformal Antenna Array for Wearable Microwave Breast Imaging Application. (2017).
Farooq, U., Iftikhar, A., Khan, M. S., Shafique, M. F. & Shubair, R. M. Design of a 1×4 CPW Microstrip Antenna Array on PET Substrate for Biomedical Applications. (2019).
Januszkiewicz, Ł., Di Barba, P. & Hausman, S. Optimal design of switchable wearable antenna array for wireless sensor networks. Sens. (Switzerland). 20, (2020).
Zu, H., Wu, B., Yang, P., Li, W. & Liu, J. Wideband and high-gain wearable antenna array with specific absorption rate suppression. Electron. (Switzerland). 10, (2021).
Kumar Malik, P., Naim, A. & Singh, R. Printed Antennas; Design and Challenges.
Peddakrishna, S., Wang, L., Kollipara, V. & Kumar, J. Compact circularly polarized monopole antenna using characteristic mode analysis. in Proceedings of Engineering and Technology Innovation, vol. 20.
Awan, W. A., Islam, T., Alsunaydih, F. N., Alsaleem, F. & Alhassoonc, K. Dual-band MIMO antenna with low mutual coupling for 2.4/5.8 GHz communication and wearable technologies. PLoS One. 19, (2024).
Awan, W. A. et al. A conformal tri-band antenna for flexible devices and body-centric wireless communications. Micromachines (Basel). 14, (2023).
Bairappaka, S. K., Ghosh, A., Kumar, J. & Bhattacharya, A. A compact triple band circular polarized slotted microstrip patch antenna with low frequency ratio. Int. J. RF Microwave Comput. Aided Eng. 32, (2022).
Chen, Z. et al. Enhancing circular polarization performance of low-profile patch antennas for wearables using characteristic mode analysis. Sensors. 23, (2023).
Siahcheshm, A., Nourinia, J. & Ghobadi, C. Circularly polarized antenna array with a new sequential phase feed network utilizing directional coupler. AEU - Int. J. Electron. Commun. 93, 75–82 (2018).
doi: 10.1016/j.aeue.2018.06.006
Shokri, M., Ghobadi, C. & Nourinia, J. Dual-band circularly polarized asymmetric dipole array antenna for GPS L1 and L2 bands. AEU - Int. J. Electron. Commun. 169, (2023).
Gao, S., Luo, Q. & Zhu, F. Circularly Polarized Antennas (2014).
Kiourti, A. & Nikita, K. S. Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis. IEEE Trans. Antennas Propag. 60, 3568–3575 (2012).
doi: 10.1109/TAP.2012.2201078
Aliqab, K., Nadeem, I. & Khan, S. R. A comprehensive review of in-body biomedical antennas: Design, challenges and applications. Micromachines. (2023). https://doi.org/10.3390/mi14071472
Tung, L. V. & Seo, C. A. Miniaturized implantable antenna for wireless power transfer and communication in biomedical applications. J. Electromagn. Eng. Sci. 22, 440–446 (2022).
doi: 10.26866/jees.2022.4.r.107
Wu, Y. & Sun, H. A. Low-profile Wideband Omnidirectional Antenna with reconfigurable tri-polarization diversity. AEU-International J. Electron. Commun..
Mahfuz, M. M. H. et al. Wearable Textile Patch Antenna: Challenges and future directions. IEEE Access. 10, 38406–38427 (2022).
doi: 10.1109/ACCESS.2022.3161564
Wang, X., Tong, X., Wang, J., Wang, J. & Han, X. A polarization conversion metasurface for reducing radar cross section and enhancing radiation performance of circularly polarized array antennas. Opt. Commun.
Li, Q. Q., Pan, H., Zhao, Z. H. & Zhang, H. F. A circularly polarized antenna array with sequential-phase feed network. J. Electromagn. Waves Appl. 36, 1244–1256 (2022).
doi: 10.1080/09205071.2021.2014363
Kuhlmann, K. Sequential rotation of antenna array elements—Rotation Angle for optimum array polarization. Adv. Radio Sci. 20, 17–21 (2023).
doi: 10.5194/ars-20-17-2023
Wen, C. et al. Slow-time FDA-MIMO technique with application to STAP Radar. IEEE Trans. Aerosp. Electron. Syst. 58, 74–95 (2022).
doi: 10.1109/TAES.2021.3098100
Harris, L. O. SAR computation for multiple wearable antennas. in Progress In Electromagnetic Research Symposium (PIERS) (2016).
Atanasov, N. T. et al. Wearable antennas for Sensor Networks and IoT applications: evaluation of SAR and Biological effects. Sensors 22, (2022).
Malik, N. A., Sant, P., Ajmal, T. & Ur-Rehman, M. Implantable antennas for Bio-medical Applications. IEEE J. Electromagn. RF Microw. Med. Biol. 5, 84–96 (2021).
doi: 10.1109/JERM.2020.3026588
Pozar, D. M. Microwave Engineering-Wiley (2012) (Wiley, 2012).
Mahn, T. G., Washington, C., Barritt, K. A. & Washington, P. Navigating Government Regulation in the New Medical Age. www.fr.com. (2017).
FCC-06-103A1.
Siahcheshm, A., Nourinia, J., Ghobadi, C., Karamirad, M. & Mohammadi, B. A broadband circularly polarized cavity-backed archimedean spiral array antenna for C-band applications. AEU - Int. J. Electron. Commun. 81, 218–226 (2017).
doi: 10.1016/j.aeue.2017.08.052
Pourbagher, M., Nourinia, J. & Ghobadi, C. Circularly polarized printed crossed-dipole antenna using branch-line feed network for GPS applications. AEU - Int. J. Electron. Commun. 120, (2020).
Air, U. S. Body Tissue Dielectric Parameters _ Federal Communications Commission_2.4GHz.
Tak, J., Hong, Y. & Choi, J. Textile antenna with EBG structure for body surface wave enhancement. Electron. Lett. 51, 1131–1132 (2015).
doi: 10.1049/el.2015.1022
Liu, Q., Le, T., He, S. & Tentzeris, M. M. Button-shaped radio-frequency identification tag combining three-dimensional and inkjet printing technologies. IET Microwaves Antennas Propag. 10, 737–741 (2016).
doi: 10.1049/iet-map.2015.0711
Jiang, Z. H., Gregory, M. D. & Werner, D. H. Design and experimental investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric devices. IEEE Trans. Biomed. Circ. Syst. 10, 328–338 (2016).
doi: 10.1109/TBCAS.2015.2438551
Rizwan, M., Khan, M. W. A., Sydanheimo, L., Virkki, J. & Ukkonen, L. Flexible and stretchable brush-painted Wearable Antenna on a three-Dimensional (3-D) printed substrate. IEEE Antennas Wirel. Propag. Lett. 16, 3108–3112 (2017).
doi: 10.1109/LAWP.2017.2763743
Ullah, U., Mabrouk, I., Ben & Koziel, S. A. Compact Circularly Polarized Antenna with directional pattern for Wearable off-body communications. IEEE Antennas Wirel. Propag. Lett. 18, 2523–2527 (2019).
doi: 10.1109/LAWP.2019.2942147
Arif, A. et al. Low-profile fractal antenna for wearable on-body WBAN applications. IEEE Antennas Wirel. Propag. Lett. 18, 981–985 (2019).
doi: 10.1109/LAWP.2019.2906829
Yang, H. C., Liu, X. Y., Fan, Y. & Tentzeris, M. M. Flexible circularly polarized antenna with axial ratio bandwidth enhancement for off-body communications. IET Microwaves Antennas Propag. 15, 754–767 (2020).
doi: 10.1049/mia2.12081
Yang, H., Liu, X. & Fan, Y. Design of Broadband Circularly Polarized All-Textile Antenna and its conformal array for Wearable devices. IEEE Trans. Antennas Propag. 70, 209–220 (2022).
doi: 10.1109/TAP.2021.3098542