Evaluation of the penetration capacity of bacteria through layers of different face mask types and wearing conditions.
Bacterial load
Biocidal mask
Face mask layers
Mask wearer simulator
Non-airborne bacteria passive penetration
Wearing conditions
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 10 2024
29 10 2024
Historique:
received:
07
06
2024
accepted:
16
10
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
The aim of this study was to quantify the number of non-airborne bacteria that can passively penetrate the layers of four mask types (surgical mask, community face mask type 1 (CFM1), biocidal CFM1 and CFM2) and to determine the influence of wearing conditions for the surgical type. A mask wearer simulator consisting of a 3D anatomical replica of the upper airway connected to a breathing pump was used. Wearing time, filtration quality of the mask, fit (loose vs. tight) and breathing parameters (tidal volume, respiratory rate) were tested. A Staphylococcus epidermidis inoculum was applied to the inner layer. After the wearing simulation, the layers were separated and the bacteria counted. After four hours, no or only a few bacteria were present in the middle and outer layers. Most remained in the inner layer. Surgical mask and CFM1 retained more bacteria and provided a breeding ground for germs. The biocidal CFM1 rapidly reduced the number in the inner layer. The breathing parameters had no influence, in contrast to fit and wearing time. These results confirm that the standard test for bacterial filtration efficiency, which includes the active penetration of airborne bacteria into aerosol droplets, is the most objective measure of the ability of bacteria to penetrate through the mask layers, as the passive penetration ability of non-airborne bacteria is insignificant.
Identifiants
pubmed: 39472702
doi: 10.1038/s41598-024-76744-9
pii: 10.1038/s41598-024-76744-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25906Informations de copyright
© 2024. The Author(s).
Références
World Health Organization. Mask use in the context of COVID-19. https://iris.who.int/bitstream/handle/10665/337199/WHO-2019-nCov-IPC_Masks-2020.5-eng.pdf?sequence=1 (2020).
Ford, N. et al. Mask use in community settings in the context of COVID-19: A systematic review of ecological data. EClinicalMedicine, 38, 101024 (2021).
doi: 10.1016/j.eclinm.2021.101024
Masque de protection. In: Wikipédia [Internet]. 2024 [cité 4 mars 2024]. Disponible sur: https://fr.wikipedia.org/w/index.php?title=Masque_de_protection&oldid=212581368 (2024)
Zhiqing, L. et al. Surgical masks as source of bacterial contamination during operative procedures. J. Orthop. Transl. 14, 57–62 (2018).
doi: 10.1016/j.jot.2018.06.002
Risques biologiques. Masques de protection respiratoire et risques biologiques: foire aux questions - Risques - INRS [Internet]. Disponible sur: https://www.inrs.fr/risques/biologiques/faq-masque-protection-respiratoire.html (2024)
Lot de 5 masques. barrières 100% coton [Internet]. Disponible sur: https://www.dim.fr/p/lot-de-5-masques-barrieres-100--coton/3610862362498.html (2024).
Djeghdir, S. et al. Filtration efficiency of medical and community face masks using viral and bacterial bioaerosols. Sci. Rep., 13(1), 7115 (2023).
doi: 10.1038/s41598-023-34283-9
Kwong, L. H. et al. Review of the breathability and filtration efficiency of Common Household materials for Face masks. ACS Nano, 15(4), 5904–5924 (2021).
doi: 10.1021/acsnano.0c10146
Association française de normalisation. SPEC-S76-001. https://www.snof.org/sites/default/files/AFNORSpec-S76-001-MasquesBarrieres.pdf (2020).
The europeen committee for standardization. CWA 17553. [Internet]. [cité 29 mai 2024]. Disponible sur: (2020). https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/cwa17553_2020.pdf (2020).
Whyte, H. E. et al. Comparison of bacterial filtration efficiency vs. particle filtration efficiency to assess the performance of non-medical face masks. Sci. Rep., 12(1), 1188 (2022).
doi: 10.1038/s41598-022-05245-4
Zhu, S., Kato, S. & Yang, J. H. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Building Environ., 41(12), 1691–1702 (2006).
doi: 10.1016/j.buildenv.2005.06.024
Lindsley, W. G., Reynolds, J. S., Szalajda, J. V., Noti, J. D. & Beezhold, D. H. A Cough Aerosol Simulator for the study of Disease Transmission by Human Cough-Generated aerosols. Aerosol Sci. Technol., 47(8), 937–944 (2013).
doi: 10.1080/02786826.2013.803019
Ho, K. F., Lin, L. Y., Weng, S. P. & Chuang, K. J. Medical mask versus cotton mask for preventing respiratory droplet transmission in micro environments. Sci. Total Environ., 735, 139510 (2020).
doi: 10.1016/j.scitotenv.2020.139510
Wang, Z. Survival of Bacteria on Respirator filters. Aerosol Sci. Technol., 30(3), 300–308 (1999).
doi: 10.1080/027868299304651
Pourchez, J. et al. New insights into the standard method of assessing bacterial filtration efficiency of medical face masks. Sci. Rep., 11, 5887 (2021).
doi: 10.1038/s41598-021-85327-x
Guo, Y. Transmission of communicable respiratory infections and facemasks. JMDH , 17, (2008).
Lin, T. H., Tang, F. C., Chiang, C. H., Chang, C. P. & Lai, C. Y. Recovery of Bacteria in filtering Facepiece respirators and effects of Artificial Saliva/Perspiration on bacterial survival and performance of respirators. Aerosol Air Qual. Res. 17(1), 187–197 (2017).
doi: 10.4209/aaqr.2015.03.0196
Armand, Q. et al. Impact of medical face mask wear on bacterial filtration efficiency and breathability. Environ. Technol. Innov., 28, 102897 (2022).
doi: 10.1016/j.eti.2022.102897
Caire, R. et al. YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro. Nat. Commun., 13, 6995 (2022).
doi: 10.1038/s41467-022-34432-0
Hall, J. E., Hall, J. E. & Guyton, A. C. Guyton and Hall Textbook of Medical Physiology: Student Consult. Activate at studentconsult.com. Searchable full text Online 12. edn 1091 (Saunders, Elsevier, 2011).
Park, A. M. et al. Bacterial and fungal isolation from face masks under the COVID-19 pandemic. Sci. Rep., 12(1), 11361 (2022).
doi: 10.1038/s41598-022-15409-x
Kisielinski, K., Wojtasik, B., Zalewska, A., Livermore, D. M. & Jurczak-Kurek, A. The Bacterial Burden of Worn Face Masks – Observational Research and Literature Review [Internet]. 2023 [cité 19 avr 2024]. Disponible sur: https://www.preprints.org/manuscript/202312.1576/v1 (2023).
Merenstein, C. et al. Effects of Mask reuse on the Oropharyngeal, skin, and mask Microbiome. J. Infect. Dis., 2023;jiad167, (2023).
Mast, J. et al. Application of silver-based biocides in face masks intended for general use requires regulatory control. Sci. Total Environ. Avr. 870, 161889 (2023).
doi: 10.1016/j.scitotenv.2023.161889
O’Dowd, K. et al. Face masks and respirators in the fight against the COVID-19 pandemic: A review of current materials, advances and future perspectives. Mater., 13(15), 3363 (2020).
doi: 10.3390/ma13153363
Abbasinia, M., Karimie, S., Haghighat, M. & Mohammadfam, I. Application of nanomaterials in personal respiratory protection equipment: A literature review. Saf., 4(4), 47 (2018).
Elechiguerra, J. L. et al. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol., 3(1): 6. (2005).
Swolana, D. et al. The Antibacterial Effect of Silver nanoparticles on Staphylococcus Epidermidis strains with different biofilm-forming ability. Nanomaterials Mai. 10(5), 1010 (2020).
doi: 10.3390/nano10051010
Hou, E. J. et al. Using the concept of circular economy to reduce the environmental impact of COVID-19 face mask waste. Sustain. Mater. Technol., 33, e00475 (2022).
Huang, Y. et al. Hydrophobic porous polypropylene with hierarchical structures for Ultrafast and highly selective oil/water separation. ACS Appl. Mater. Interfaces. 13(14), 16859–16868 (2021).
doi: 10.1021/acsami.0c21852
Tcharkhtchi, A. et al. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioactive Mater., 6(1), 106–122 (2021).
doi: 10.1016/j.bioactmat.2020.08.002
Chua, M. H. et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research [Internet]. 7 août 2020 [cité 22 avr 2024];2020. Disponible sur: https://doi.org/10.34133/2020/7286735 (2020).
Konda, A. et al. Aerosol Filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano, 14(5), 6339–6347 (2020).
doi: 10.1021/acsnano.0c03252
Ju, J. T. J., Boisvert, L. N. & Zuo, Y. Y. Face masks against COVID-19: standards, efficacy, testing and decontamination methods. Adv. Colloid Interface Sci.. 292, 102435 (2021).
doi: 10.1016/j.cis.2021.102435
Sanchez, A. L., Hubbard, J. A., Dellinger, J. G. & Servantes, B. L. Experimental study of electrostatic aerosol filtration at moderate filter face velocity. Aerosol Sci. Technol., 47(6), 606–615 (2013).
doi: 10.1080/02786826.2013.778384
Aydin, O. et al. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. Extreme Mech. Lett. oct. 40, 100924 (2020).
doi: 10.1016/j.eml.2020.100924
Gonçalves, M. & Weon, B. M. Evaluating droplet survivability on face masks with x-ray microtomography. ACS Appl. Bio Mater., 7(1), 193–202 (2024).
doi: 10.1021/acsabm.3c00804
Wade, W. G. Characterisation of the human oral microbiome. J. Oral Biosci., 55(3), 143–148 (2013).
doi: 10.1016/j.job.2013.06.001
Lynge Pedersen, A. M. & Belstrøm, D. The role of natural salivary defences in maintaining a healthy oral microbiota. J. Dentistry , 80, S3–12 (2019).
doi: 10.1016/j.jdent.2018.08.010
Kilian, M. et al. The oral microbiome—an update for oral healthcare professionals. Br. Dent. J., 221(10), 657–666 (2016).
doi: 10.1038/sj.bdj.2016.865