Trace benzene capture by decoration of structural defects in metal-organic framework materials.


Journal

Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473

Informations de publication

Date de publication:
Nov 2024
Historique:
received: 22 12 2023
accepted: 16 09 2024
medline: 30 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: ppublish

Résumé

Capture of trace benzene is an important and challenging task. Metal-organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti

Identifiants

pubmed: 39472753
doi: 10.1038/s41563-024-02029-1
pii: 10.1038/s41563-024-02029-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1531-1538

Subventions

Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/I011870, EP/V056409)
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 742401

Informations de copyright

© 2024. The Author(s).

Références

World Health Organization. Guidelines for Indoor Air Quality: Selected Pollutants (WHO Regional Office for Europe, 2010).
Li, W. et al. Fluorescence enhancement of a metal‐organic framework for ultra‐efficient detection of trace benzene vapor. Angew. Chem. Int. Ed. 62, e202303500 (2023).
doi: 10.1002/anie.202303500
Bathla, A., Vikrant, K., Kukkar, D. & Kim, K. H. Photocatalytic degradation of gaseous benzene using metal oxide nanocomposites. Adv. Colloid Interface Sci. 305, 102696 (2022).
doi: 10.1016/j.cis.2022.102696 pubmed: 35640317
Vogt, C., Kleinsteuber, S. & Richnow, H. H. Anaerobic benzene degradation by bacteria. Microb. Biotechnol. 4, 710–724 (2011).
doi: 10.1111/j.1751-7915.2011.00260.x pubmed: 21450012 pmcid: 3815408
Khan, A. et al. A comparison of figure of merit (FOM) for various materials in adsorptive removal of benzene under ambient temperature and pressure. Environ. Res. 168, 96–108 (2019).
doi: 10.1016/j.envres.2018.09.019 pubmed: 30296641
Sun, X. et al. Novel hierarchical Fe(III)-doped Cu-MOFs with enhanced adsorption of benzene vapor. Front. Chem. 7, 652 (2019).
doi: 10.3389/fchem.2019.00652 pubmed: 31612128 pmcid: 6776884
Dedecker, K., Drobek, M., Rouessac, V. & Julbe, A. A palladium-based MOF for the preferential sorption of benzene. ACS Appl. Mater. Interfaces 15, 6831–6838 (2023).
doi: 10.1021/acsami.2c20034 pubmed: 36708327
Li, X. et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep. Purif. Technol. 235, 116213 (2020).
doi: 10.1016/j.seppur.2019.116213
Yuan, J., Liu, X., Li, M. & Wang, H. Design of nanoporous materials for trace removal of benzene through high throughput screening. Sep. Purif. Technol. 324, 124558 (2023).
doi: 10.1016/j.seppur.2023.124558
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).
doi: 10.1126/science.1230444 pubmed: 23990564
Ji, Z., Wang, H., Canossa, S., Wuttke, S. & Yaghi, O. M. Pore chemistry of metal–organic frameworks. Adv. Funct. Mater. 30, 2000238 (2020).
doi: 10.1002/adfm.202000238
Woellner, M. et al. Adsorption and detection of hazardous trace gases by metal–organic frameworks. Adv. Mater. 30, 1704679 (2018).
doi: 10.1002/adma.201704679
Han, X. et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mater. 17, 691–696 (2018).
doi: 10.1038/s41563-018-0104-7 pubmed: 29891889
Ahmed, E., Deep, A., Kwon, E. E., Brown, R. J. & Kim, K. H. Performance comparison of MOF and other sorbent materials in removing key odorants emitted from pigpen slurry. Sci. Rep. 6, 31283 (2016).
doi: 10.1038/srep31283 pubmed: 27511827 pmcid: 4980631
Vikrant, K., Na, C. J., Younis, S. A., Kim, K. H. & Kumar, S. Evidence for superiority of conventional adsorbents in the sorptive removal of gaseous benzene under real-world conditions: test of activated carbon against novel metal-organic frameworks. J. Clean. Prod. 235, 1090–1102 (2019).
doi: 10.1016/j.jclepro.2019.07.038
Jhung, S. H. et al. Microwave synthesis of chromium terephthalate MIL‐101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).
doi: 10.1002/adma.200601604
Gwardiak, S., Szczęśniak, B., Choma, J. & Jaroniec, M. Benzene adsorption on synthesized and commercial metal–organic frameworks. J. Porous Mater. 26, 775–783 (2019).
doi: 10.1007/s10934-018-0678-0
Zhang, D., Liu, J., Liu, M., Liu, L. & Do, D. D. On the capture of ultralow-level benzene in indoor environments: experiments, modeling and molecular simulation. Sep. Purif. Technol. 251, 117306 (2020).
doi: 10.1016/j.seppur.2020.117306
Xie, L. H., Liu, X. M., He, T. & Li, J. R. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds. Chem 4, 1911–1927 (2018).
doi: 10.1016/j.chempr.2018.05.017
He, T. et al. Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nat. Mater. 21, 689–695 (2022).
doi: 10.1038/s41563-022-01237-x pubmed: 35484330 pmcid: 9156410
Han, Y. et al. Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 9, 739–754 (2023).
doi: 10.1016/j.chempr.2023.02.002
Hu, L. et al. A novel aluminum‐based metal‐organic framework with uniform micropores for trace BTEX adsorption. Angew. Chem. Int. Ed. 62, e202215296 (2023).
doi: 10.1002/anie.202215296
Zhang, S. et al. Remarkable performance of N-doped carbonization modified MIL-101 for low-concentration benzene adsorption. Sep. Purif. Technol. 289, 120784 (2022).
doi: 10.1016/j.seppur.2022.120784
Lv, J. A. et al. Interior and exterior surface modification of Zr-based metal–organic frameworks for trace benzene removal. Inorg. Chem. 63, 4249–4259 (2024).
doi: 10.1021/acs.inorgchem.3c04389 pubmed: 38364203
Hu, L. et al. Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption. Nat. Commun. 15, 3204 (2024).
doi: 10.1038/s41467-024-47612-x pubmed: 38615115 pmcid: 11016061
Dan-Hardi, M. et al. A new photoactive crystalline highly porous titanium (IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857–10859 (2009).
doi: 10.1021/ja903726m pubmed: 19621926
Zhang, Y. et al. Single-atom Cu anchored catalysts for photocatalytic renewable H
doi: 10.1038/s41467-021-27698-3 pubmed: 35013219 pmcid: 8748625
Kumar, N., Gaur, A. S. & Sastry, G. N. A perspective on the nature of cation-π interactions. J. Chem. Sci. 133, 97 (2021).
doi: 10.1007/s12039-021-01959-6
International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans Report No. 120 (WHO Press, 2018).
Fu, Y. et al. Solvent-derived defects suppress adsorption in MOF-74. Nat. Commun. 14, 2386 (2023).
doi: 10.1038/s41467-023-38155-8 pubmed: 37185270 pmcid: 10130178
Giovine, R. et al. NMR crystallography to probe the breathing effect of the MIL-53 (Al) metal–organic framework using solid-state NMR measurements of
doi: 10.1107/S2053229616017915 pubmed: 28257011
Masierak, W. et al. Microcrystallization of benzene-d
doi: 10.1021/jp047348r
Kolokolov, D. I. et al. Uncovering the rotation and translational mobility of benzene confined in UiO-66 (Zr) metal–organic framework by the
doi: 10.1021/acs.jpcc.6b12001
Kolokolov, D. I. et al. Diffusion of benzene in the breathing metal–organic framework MIL-53(Cr): a joint experimental–computational investigation. J. Phys. Chem. C 119, 8217–8225 (2015).
doi: 10.1021/acs.jpcc.5b01465
Kolokolov, D. I. et al. Experimental and simulation evidence of a corkscrew motion for benzene in the metal–organic framework MIL-47. J. Phys. Chem. C 116, 15093–15098 (2012).
doi: 10.1021/jp302995b
Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO
doi: 10.1038/s41586-019-1798-7 pubmed: 31827290
Marsh, C. et al. Binding of carbon dioxide and acetylene to free carboxylic acid sites in a metal–organic framework. Chem. Sci. 15, 8197–8203 (2024).
doi: 10.1039/D4SC00101J pubmed: 38817566 pmcid: 11134375
Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).
doi: 10.1006/jmre.1999.1896 pubmed: 10617439

Auteurs

Yu Han (Y)

Department of Chemistry, University of Manchester, Manchester, UK.

Wenyuan Huang (W)

College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.

Meng He (M)

Department of Chemistry, University of Manchester, Manchester, UK.

Bing An (B)

Department of Chemistry, University of Manchester, Manchester, UK.

Yinlin Chen (Y)

Department of Chemistry, University of Manchester, Manchester, UK.

Xue Han (X)

College of Chemistry, Beijing Normal University, Beijing, China.

Lan An (L)

Department of Chemical Engineering, University of Manchester, Manchester, UK.

Meredydd Kippax-Jones (M)

Department of Chemistry, University of Manchester, Manchester, UK.
Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.

Jiangnan Li (J)

College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.

Yuhang Yang (Y)

Department of Chemical Engineering, University of Manchester, Manchester, UK.

Mark D Frogley (MD)

Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.

Cheng Li (C)

Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Danielle Crawshaw (D)

Department of Chemistry, University of Manchester, Manchester, UK.

Pascal Manuel (P)

ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK.

Svemir Rudić (S)

ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK.

Yongqiang Cheng (Y)

Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Ian Silverwood (I)

ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, UK.

Luke L Daemen (LL)

Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Anibal J Ramirez-Cuesta (AJ)

Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Sarah J Day (SJ)

Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.

Stephen P Thompson (SP)

Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.

Ben F Spencer (BF)

Photon Science Institute, University of Manchester, Manchester, UK.
Department of Materials, University of Manchester, Manchester, UK.

Marek Nikiel (M)

Photon Science Institute, University of Manchester, Manchester, UK.
Department of Materials, University of Manchester, Manchester, UK.
National Graphene Institute, University of Manchester, Manchester, UK.

Daniel Lee (D)

Department of Chemical Engineering, University of Manchester, Manchester, UK.

Martin Schröder (M)

Department of Chemistry, University of Manchester, Manchester, UK. m.schroder@manchester.ac.uk.

Sihai Yang (S)

Department of Chemistry, University of Manchester, Manchester, UK. Sihai.Yang@pku.edu.cn.
College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China. Sihai.Yang@pku.edu.cn.

Classifications MeSH