Trace benzene capture by decoration of structural defects in metal-organic framework materials.
Journal
Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473
Informations de publication
Date de publication:
Nov 2024
Nov 2024
Historique:
received:
22
12
2023
accepted:
16
09
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
ppublish
Résumé
Capture of trace benzene is an important and challenging task. Metal-organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti
Identifiants
pubmed: 39472753
doi: 10.1038/s41563-024-02029-1
pii: 10.1038/s41563-024-02029-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1531-1538Subventions
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/I011870, EP/V056409)
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 742401
Informations de copyright
© 2024. The Author(s).
Références
World Health Organization. Guidelines for Indoor Air Quality: Selected Pollutants (WHO Regional Office for Europe, 2010).
Li, W. et al. Fluorescence enhancement of a metal‐organic framework for ultra‐efficient detection of trace benzene vapor. Angew. Chem. Int. Ed. 62, e202303500 (2023).
doi: 10.1002/anie.202303500
Bathla, A., Vikrant, K., Kukkar, D. & Kim, K. H. Photocatalytic degradation of gaseous benzene using metal oxide nanocomposites. Adv. Colloid Interface Sci. 305, 102696 (2022).
doi: 10.1016/j.cis.2022.102696
pubmed: 35640317
Vogt, C., Kleinsteuber, S. & Richnow, H. H. Anaerobic benzene degradation by bacteria. Microb. Biotechnol. 4, 710–724 (2011).
doi: 10.1111/j.1751-7915.2011.00260.x
pubmed: 21450012
pmcid: 3815408
Khan, A. et al. A comparison of figure of merit (FOM) for various materials in adsorptive removal of benzene under ambient temperature and pressure. Environ. Res. 168, 96–108 (2019).
doi: 10.1016/j.envres.2018.09.019
pubmed: 30296641
Sun, X. et al. Novel hierarchical Fe(III)-doped Cu-MOFs with enhanced adsorption of benzene vapor. Front. Chem. 7, 652 (2019).
doi: 10.3389/fchem.2019.00652
pubmed: 31612128
pmcid: 6776884
Dedecker, K., Drobek, M., Rouessac, V. & Julbe, A. A palladium-based MOF for the preferential sorption of benzene. ACS Appl. Mater. Interfaces 15, 6831–6838 (2023).
doi: 10.1021/acsami.2c20034
pubmed: 36708327
Li, X. et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep. Purif. Technol. 235, 116213 (2020).
doi: 10.1016/j.seppur.2019.116213
Yuan, J., Liu, X., Li, M. & Wang, H. Design of nanoporous materials for trace removal of benzene through high throughput screening. Sep. Purif. Technol. 324, 124558 (2023).
doi: 10.1016/j.seppur.2023.124558
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).
doi: 10.1126/science.1230444
pubmed: 23990564
Ji, Z., Wang, H., Canossa, S., Wuttke, S. & Yaghi, O. M. Pore chemistry of metal–organic frameworks. Adv. Funct. Mater. 30, 2000238 (2020).
doi: 10.1002/adfm.202000238
Woellner, M. et al. Adsorption and detection of hazardous trace gases by metal–organic frameworks. Adv. Mater. 30, 1704679 (2018).
doi: 10.1002/adma.201704679
Han, X. et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mater. 17, 691–696 (2018).
doi: 10.1038/s41563-018-0104-7
pubmed: 29891889
Ahmed, E., Deep, A., Kwon, E. E., Brown, R. J. & Kim, K. H. Performance comparison of MOF and other sorbent materials in removing key odorants emitted from pigpen slurry. Sci. Rep. 6, 31283 (2016).
doi: 10.1038/srep31283
pubmed: 27511827
pmcid: 4980631
Vikrant, K., Na, C. J., Younis, S. A., Kim, K. H. & Kumar, S. Evidence for superiority of conventional adsorbents in the sorptive removal of gaseous benzene under real-world conditions: test of activated carbon against novel metal-organic frameworks. J. Clean. Prod. 235, 1090–1102 (2019).
doi: 10.1016/j.jclepro.2019.07.038
Jhung, S. H. et al. Microwave synthesis of chromium terephthalate MIL‐101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).
doi: 10.1002/adma.200601604
Gwardiak, S., Szczęśniak, B., Choma, J. & Jaroniec, M. Benzene adsorption on synthesized and commercial metal–organic frameworks. J. Porous Mater. 26, 775–783 (2019).
doi: 10.1007/s10934-018-0678-0
Zhang, D., Liu, J., Liu, M., Liu, L. & Do, D. D. On the capture of ultralow-level benzene in indoor environments: experiments, modeling and molecular simulation. Sep. Purif. Technol. 251, 117306 (2020).
doi: 10.1016/j.seppur.2020.117306
Xie, L. H., Liu, X. M., He, T. & Li, J. R. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds. Chem 4, 1911–1927 (2018).
doi: 10.1016/j.chempr.2018.05.017
He, T. et al. Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nat. Mater. 21, 689–695 (2022).
doi: 10.1038/s41563-022-01237-x
pubmed: 35484330
pmcid: 9156410
Han, Y. et al. Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 9, 739–754 (2023).
doi: 10.1016/j.chempr.2023.02.002
Hu, L. et al. A novel aluminum‐based metal‐organic framework with uniform micropores for trace BTEX adsorption. Angew. Chem. Int. Ed. 62, e202215296 (2023).
doi: 10.1002/anie.202215296
Zhang, S. et al. Remarkable performance of N-doped carbonization modified MIL-101 for low-concentration benzene adsorption. Sep. Purif. Technol. 289, 120784 (2022).
doi: 10.1016/j.seppur.2022.120784
Lv, J. A. et al. Interior and exterior surface modification of Zr-based metal–organic frameworks for trace benzene removal. Inorg. Chem. 63, 4249–4259 (2024).
doi: 10.1021/acs.inorgchem.3c04389
pubmed: 38364203
Hu, L. et al. Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption. Nat. Commun. 15, 3204 (2024).
doi: 10.1038/s41467-024-47612-x
pubmed: 38615115
pmcid: 11016061
Dan-Hardi, M. et al. A new photoactive crystalline highly porous titanium (IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857–10859 (2009).
doi: 10.1021/ja903726m
pubmed: 19621926
Zhang, Y. et al. Single-atom Cu anchored catalysts for photocatalytic renewable H
doi: 10.1038/s41467-021-27698-3
pubmed: 35013219
pmcid: 8748625
Kumar, N., Gaur, A. S. & Sastry, G. N. A perspective on the nature of cation-π interactions. J. Chem. Sci. 133, 97 (2021).
doi: 10.1007/s12039-021-01959-6
International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans Report No. 120 (WHO Press, 2018).
Fu, Y. et al. Solvent-derived defects suppress adsorption in MOF-74. Nat. Commun. 14, 2386 (2023).
doi: 10.1038/s41467-023-38155-8
pubmed: 37185270
pmcid: 10130178
Giovine, R. et al. NMR crystallography to probe the breathing effect of the MIL-53 (Al) metal–organic framework using solid-state NMR measurements of
doi: 10.1107/S2053229616017915
pubmed: 28257011
Masierak, W. et al. Microcrystallization of benzene-d
doi: 10.1021/jp047348r
Kolokolov, D. I. et al. Uncovering the rotation and translational mobility of benzene confined in UiO-66 (Zr) metal–organic framework by the
doi: 10.1021/acs.jpcc.6b12001
Kolokolov, D. I. et al. Diffusion of benzene in the breathing metal–organic framework MIL-53(Cr): a joint experimental–computational investigation. J. Phys. Chem. C 119, 8217–8225 (2015).
doi: 10.1021/acs.jpcc.5b01465
Kolokolov, D. I. et al. Experimental and simulation evidence of a corkscrew motion for benzene in the metal–organic framework MIL-47. J. Phys. Chem. C 116, 15093–15098 (2012).
doi: 10.1021/jp302995b
Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO
doi: 10.1038/s41586-019-1798-7
pubmed: 31827290
Marsh, C. et al. Binding of carbon dioxide and acetylene to free carboxylic acid sites in a metal–organic framework. Chem. Sci. 15, 8197–8203 (2024).
doi: 10.1039/D4SC00101J
pubmed: 38817566
pmcid: 11134375
Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).
doi: 10.1006/jmre.1999.1896
pubmed: 10617439