Dietary bisphenols exposure as an influencing factor of body mass index.
Bisphenol A
Bisphenol S
Children
Obesity
Overweight
Weight excess
Journal
Environmental health : a global access science source
ISSN: 1476-069X
Titre abrégé: Environ Health
Pays: England
ID NLM: 101147645
Informations de publication
Date de publication:
29 Oct 2024
29 Oct 2024
Historique:
received:
11
04
2024
accepted:
17
10
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Over the past three decades, there has been a significant increase in the prevalence and incidence of overweight and obesity worldwide. The obesogen hypothesis suggests that certain external agents may affect pathways related to fat accumulation and energy balance by stimulating fat cell differentiation and proliferation. Previous research has indicated that exposure to bisphenol A (BPA) and some of its analogues may influence fat accumulation by promoting the transformation of preadipocytes into adipocytes. This study aimed to assess the possible contribution of dietary bisphenol exposure to the odds of developing overweight and obesity in a sample of Spanish children according to sex. Dietary and anthropometric data were collected from 179 controls and 124 cases schoolchildren aged 3-12 years. Dietary exposure to BPA and bisphenol S (BPS) was assessed using a food consumption frequency questionnaire. Logistic regression models were used to assess the influence of dietary exposure to bisphenols on overweight and obesity stratified by sex. For females, cases had significantly higher exposure to BPA from meat and eggs compared to controls (median = 319.55, interquartile range (IQR) = 176.39-381.01 vs 231.79 (IQR) = 162.11-350.19, p-value = 0.046). Diet quality was higher for controls (6.21 (2.14) vs 4.80 (2.24) p < 0.001) among males independently of a high or low exposure to bisphenols. However, higher diet quality was observed for female controls with an high exposure of total bisphenols (6.79 (2.04) vs 5.33 (2.02) p = 0.031). Females exposed to high levels of BPA from meat and eggs had higher likelihood of being overweight and obese (adjusted Odds Ratio = 2.70, 95% confidence interval = 1.00 - 7.32). However, no consistent associations were found in males. High BPA levels from meat and eggs were positively associated with overweight and obesity in females. The dietary intake of BPA in the schoolchildren in the present study was much higher than the acceptable daily intake established by EFSA for the last year.
Sections du résumé
BACKGROUND
BACKGROUND
Over the past three decades, there has been a significant increase in the prevalence and incidence of overweight and obesity worldwide. The obesogen hypothesis suggests that certain external agents may affect pathways related to fat accumulation and energy balance by stimulating fat cell differentiation and proliferation. Previous research has indicated that exposure to bisphenol A (BPA) and some of its analogues may influence fat accumulation by promoting the transformation of preadipocytes into adipocytes. This study aimed to assess the possible contribution of dietary bisphenol exposure to the odds of developing overweight and obesity in a sample of Spanish children according to sex.
METHODS
METHODS
Dietary and anthropometric data were collected from 179 controls and 124 cases schoolchildren aged 3-12 years. Dietary exposure to BPA and bisphenol S (BPS) was assessed using a food consumption frequency questionnaire. Logistic regression models were used to assess the influence of dietary exposure to bisphenols on overweight and obesity stratified by sex.
RESULTS
RESULTS
For females, cases had significantly higher exposure to BPA from meat and eggs compared to controls (median = 319.55, interquartile range (IQR) = 176.39-381.01 vs 231.79 (IQR) = 162.11-350.19, p-value = 0.046). Diet quality was higher for controls (6.21 (2.14) vs 4.80 (2.24) p < 0.001) among males independently of a high or low exposure to bisphenols. However, higher diet quality was observed for female controls with an high exposure of total bisphenols (6.79 (2.04) vs 5.33 (2.02) p = 0.031). Females exposed to high levels of BPA from meat and eggs had higher likelihood of being overweight and obese (adjusted Odds Ratio = 2.70, 95% confidence interval = 1.00 - 7.32). However, no consistent associations were found in males.
CONCLUSIONS
CONCLUSIONS
High BPA levels from meat and eggs were positively associated with overweight and obesity in females. The dietary intake of BPA in the schoolchildren in the present study was much higher than the acceptable daily intake established by EFSA for the last year.
Identifiants
pubmed: 39472930
doi: 10.1186/s12940-024-01134-7
pii: 10.1186/s12940-024-01134-7
doi:
Substances chimiques
Phenols
0
Benzhydryl Compounds
0
bisphenol A
MLT3645I99
bisphenol S
80-09-1
Sulfones
0
Environmental Pollutants
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
93Informations de copyright
© 2024. The Author(s).
Références
Boudalia S, Bousbia A, Boumaaza B, Oudir M, Canivenc Lavier MC. Relationship between endocrine disruptors and obesity with a focus on bisphenol a: a narrative review. Bioimpacts. 2021;11:289–300.
doi: 10.34172/bi.2021.33
González-Casanova JE, Pertuz-Cruz SL, Caicedo-Ortega NH, Rojas-Gomez DM. Adipogenesis regulation and endocrine disruptors: emerging insights in obesity. Biomed Res Int. 2020;2020:7453786.
doi: 10.1155/2020/7453786
Murro I, Lisco G, Di Noia C, Lampignano L, Zupo R, Giagulli VA, et al. Endocrine disruptors and obesity: an overview. Endocr Metab Immune Disord Drug Targets. 2022;22:798–806.
doi: 10.2174/1871530322666220328122300
Di Pietro G, Forcucci F, Chiarelli F. Endocrine disruptor chemicals and children’s health. Int J Mol Sci. 2023;24: 2671.
doi: 10.3390/ijms24032671
Groh KJ, Geueke B, Martin O, Maffini M, Muncke J. Overview of intentionally used food contact chemicals and their hazards. Environ Int. 2021;150:106225.
doi: 10.1016/j.envint.2020.106225
Micić D, Polovina S, Micić D, Macut D. Endocrine disrupting chemicals and obesity: the evolving story of obesogens. Acta Endocrinol (Buchar). 2021;17:503–8.
doi: 10.4183/aeb.2021.503
Agencia Española de Seguridad Alimentaria y Nutrición (AESAN). Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre las evidencias disponibles en relación a la potencial actividad obesogénica de determinados compuestos químicos que pueden estar presentes en los alimentos. 2023. Available from: https://www.aesan.gob.es/AECOSAN/docs/documentos/publicaciones/revistas_comite_cientifico/OBESOGENOS.pdf
Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, et al. Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis. BMJ Open. 2020;10: e033509.
doi: 10.1136/bmjopen-2019-033509
Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-disrupting chemicals and child health. Annu Rev Pharmacol Toxicol. 2022;62:573–94.
doi: 10.1146/annurev-pharmtox-021921-093352
Haverinen E, Fernandez MF, Mustieles V, Tolonen H. Metabolic syndrome and endocrine disrupting chemicals: an overview of exposure and health effects. Int J Environ Res Public Health. 2021;18: 13047.
doi: 10.3390/ijerph182413047
Biemann R, Blüher M, Isermann B. Exposure to endocrine-disrupting compounds such as phthalates and bisphenol A is associated with an increased risk for obesity. Best Pract Res Clin Endocrinol Metab. 2021;35: 101546.
doi: 10.1016/j.beem.2021.101546
European Food Safety Authority (EFSA): Bisfenol A. 2023. https://www.efsa.europa.eu/es/topics/topic/bisphenol . Accessed 5 Feb 2024.
González-Casanova JE, Bermúdez V, Caro Fuentes NJ, Angarita LC, Caicedo NH, Rivas Muñoz J, et al. New Evidence on BPA’s role in adipose tissue development of proinflammatory processes and its relationship with obesity. Int J Mol Sci. 2023;24: 8231.
doi: 10.3390/ijms24098231
Ni L, Zhong J, Chi H, Lin N, Liu Z. Recent advances in sources, migration, public health, and surveillance of bisphenol a and its structural analogs in canned foods. Foods. 2023;12: 1989.
doi: 10.3390/foods12101989
Predieri B, Iughetti L, Bernasconi S, Street ME. Endocrine disrupting chemicals’ effects in children: what we know and what we need to learn? Int J Mol Sci. 2022;23: 11899.
doi: 10.3390/ijms231911899
Huc L, Lemarié A, Guéraud F, Héliès-Toussaint C. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol In Vitro. 2012;26:709–17.
doi: 10.1016/j.tiv.2012.03.017
Martínez MÁ, Blanco J, Rovira J, Kumar V, Domingo JL, Schuhmacher M. Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line. Food Chem Toxicol. 2020;140: 111298.
doi: 10.1016/j.fct.2020.111298
Skledar DG, Carino A, Trontelj J, Troberg J, Distrutti E, Marchianò S, et al. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. Chemosphere. 2019;215:870–80.
doi: 10.1016/j.chemosphere.2018.10.129
Darbre PD. Endocrine disruptors and obesity. Curr Obes Rep. 2017;6:18–27.
doi: 10.1007/s13679-017-0240-4
Desai M, Ferrini MG, Jellyman JK, Han G, Ross MG. In vivo and in vitro bisphenol A exposure effects on adiposity. J Dev Orig Health Dis. 2018;9:678–87.
doi: 10.1017/S2040174418000600
Kim KY, Lee E, Kim Y. The association between bisphenol a exposure and obesity in children-a systematic review with meta-analysis. Int J Environ Res Public Health. 2019;16: 2521.
doi: 10.3390/ijerph16142521
Robles-Aguilera V, Gálvez-Ontiveros Y, Rodrigo L, Salcedo-Bellido I, Aguilera M, Zafra-Gómez A, et al. Factors associated with exposure to dietary bisphenols in adolescents. Nutrients. 2021;13: 1553.
doi: 10.3390/nu13051553
Wu W, Li M, Liu A, Wu C, Li D, Deng Q, et al. Bisphenol a and the risk of obesity a systematic review with meta-analysis of the epidemiological evidence. Dose Response. 2020;18:1559325820916949.
doi: 10.1177/1559325820916949
Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ. 2007;335:194.
doi: 10.1136/bmj.39238.399444.55
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.
doi: 10.1136/bmj.320.7244.1240
López-Gajardo MA, Leo FM, Sánchez-Miguel PA, López-Gajardo D, Soulas C, Tapia-Serrano MA. KIDMED 2.0, An update of the KIDMED questionnaire: Evaluation of the psychometric properties in youth. Front Nutr. 2022;9: 945721.
doi: 10.3389/fnut.2022.945721
Gálvez-Ontiveros Y, Moscoso-Ruiz I, Rodrigo L, Aguilera M, Rivas A, Zafra-Gómez A. Presence of Parabens and Bisphenols in Food Commonly Consumed in Spain. Foods. 2021;10: 92.
doi: 10.3390/foods10010092
García-Córcoles MT, Cipa M, Rodríguez-Gómez R, Rivas A, Olea-Serrano F, Vílchez JL, et al. Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid-liquid extraction and clean-up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis. Talanta. 2018;178:441–8.
doi: 10.1016/j.talanta.2017.09.067
Monteagudo C, Robles-Aguilera V, Salcedo-Bellido I, Gálvez-Ontiveros Y, Samaniego-Sánchez C, Aguilera M, et al. Dietary exposure to parabens and body mass index in an adolescent Spanish population. Environ Res. 2021;201: 111548.
doi: 10.1016/j.envres.2021.111548
Moreiras O, Carbajal Á, Cabrera L, Cuadrado C. Tablas de composición de alimentos. Guía de prácticas. 19ª ed. Pirámide; 2018.
Charisiadis P, Andrianou XD, van der Meer TP, den Dunnen WFA, Swaab DF, Wolffenbuttel BHR, et al. Possible Obesogenic Effects of Bisphenols Accumulation in the Human Brain. Sci Rep. 2018;8:8186.
doi: 10.1038/s41598-018-26498-y
Song Y, Hauser R, Hu F, Franke A, Liu S, Sun Q. Urinary concentrations of bisphenol A and phthalate metabolites and weight change: a prospective investigation in US women. Int J Obes (Lond). 2014;38:1532–7.
doi: 10.1038/ijo.2014.63
Zhang Y, Dong T, Hu W, Wang X, Xu B, Lin Z, et al. Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models. Environ Int. 2019;123:325–36.
doi: 10.1016/j.envint.2018.11.076
Kapoor N, Arora S, Kalra S. Gender Disparities in People Living with Obesity - An Unchartered Territory. J Midlife Health. 2021;12:103–7.
Moon MK, Kim MJ, Lee I, Kim S, Choi S, Park J, et al. Exposure to Bisphenol A, S, and F and its Association with Obesity and Diabetes Mellitus in General Adults of Korea: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Expo Health. 2023;15:53–67.
doi: 10.1007/s12403-022-00473-5
Barboza LGA, Cunha SC, Monteiro C, Fernandes JO, Guilhermino L. Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. Journal of Hazardous Materials. 2020;393: 122419.
doi: 10.1016/j.jhazmat.2020.122419
Wang H, Zhou Y, Tang C, Wu J, Chen Y, Jiang Q. Association between bisphenol A exposure and body mass index in Chinese school children: a cross-sectional study. Environ Health. 2012;11:79.
doi: 10.1186/1476-069X-11-79
Li D-K, Miao M, Zhou Z, Wu C, Shi H, Liu X, et al. Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS ONE. 2013;8: e65399.
doi: 10.1371/journal.pone.0065399
Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G, Fthenou E, Dermitzaki E, et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ Res. 2016;146:379–87.
doi: 10.1016/j.envres.2016.01.017
Boucher JG, Husain M, Rowan-Carroll A, Williams A, Yauk CL, Atlas E. Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014;22:2333–43.
doi: 10.1002/oby.20848
Ariemma F, D’Esposito V, Liguoro D, Oriente F, Cabaro S, Liotti A, et al. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes. PLoS ONE. 2016;11: e0150762.
doi: 10.1371/journal.pone.0150762
Boucher JG, Ahmed S, Atlas E. Bisphenol S Induces Adipogenesis in Primary Human Preadipocytes From Female Donors. Endocrinology. 2016;157:1397–407.
doi: 10.1210/en.2015-1872
Reina-Pérez I, Olivas-Martínez A, Mustieles V, Salamanca-Fernández E, Molina-Molina JM, Olea N, et al. The Mixture of Bisphenol-A and Its Substitutes Bisphenol-S and Bisphenol-F Exerts Obesogenic Activity on Human Adipose-Derived Stem Cells. Toxics. 2022;10: 287.
doi: 10.3390/toxics10060287
Qin J, Ru S, Wang W, Hao L, Ru Y, Wang J, et al. Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish. Environ Pollut. 2020;263: 114535.
doi: 10.1016/j.envpol.2020.114535
Santangeli S, Notarstefano V, Maradonna F, Giorgini E, Gioacchini G, Forner-Piquer I, et al. Effects of diethylene glycol dibenzoate and Bisphenol A on the lipid metabolism of Danio rerio. Sci Total Environ. 2018;636:641–55.
doi: 10.1016/j.scitotenv.2018.04.291
Sun L, Ling Y, Jiang J, Wang D, Wang J, Li J, et al. Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq. Chemosphere. 2020;251: 126318.
doi: 10.1016/j.chemosphere.2020.126318
Tian S, Yan S, Meng Z, Huang S, Sun W, Jia M, et al. New insights into bisphenols induced obesity in zebrafish (Danio rerio): Activation of cannabinoid receptor CB1. J Hazard Mater. 2021;418: 126100.
doi: 10.1016/j.jhazmat.2021.126100
Angle BM, Do RP, Ponzi D, Stahlhut RW, Drury BE, Nagel SC, et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol. 2013;42:256–68.
doi: 10.1016/j.reprotox.2013.07.017
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. Environ Res. 2018;164:45–52.
doi: 10.1016/j.envres.2018.02.011
Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, et al. Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats. Evidences of metabolic disruptor hypothesis. Molecular and Cellular Endocrinology. 2020;499: 110614.
doi: 10.1016/j.mce.2019.110614
Heinsberg LW, Bui CNN, Hartle JC, Sereika SM, Choy CC, Wang D, et al. Estimated Dietary Bisphenol-A Exposure and Adiposity in Samoan Mothers and Children. Toxics. 2020;8: 67.
doi: 10.3390/toxics8030067
Liu B, Lehmler HJ, Sun Y, Xu G, Sun Q, Snetselaar LG, et al. Association of Bisphenol A and Its Substitutes, Bisphenol F and Bisphenol S, with Obesity in United States Children and Adolescents. Diabetes Metab J. 2019;43:59–75.
doi: 10.4093/dmj.2018.0045
Gajjar P, Liu Y, Li N, Buckley JP, Chen A, Lanphear BP, et al. Associations of mid-childhood bisphenol A and bisphenol S exposure with mid-childhood and adolescent obesity. Environ Epidemiol. 2021;6: e187.
doi: 10.1097/EE9.0000000000000187
Jacobson MH, Woodward M, Bao W, Liu B, Trasande L. Urinary bisphenols and obesity prevalence Among U.S. children and adolescents. J Endocr Soc. 2019;3:1715–26.
doi: 10.1210/js.2019-00201
Seo MY, Moon S, Kim S-H, Park MJ. Associations of phthalate metabolites and bisphenol a levels with obesity in children: The Korean National Environmental Health Survey (KoNEHS) 2015 to 2017. Endocrinol Metab (Seoul). 2022;37:249–60.
doi: 10.3803/EnM.2021.1235
Chen D, Kannan K, Tan H, Zheng Z, Feng Y-L, Wu Y, et al. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environ Sci Technol. 2016;50:5438–53.
doi: 10.1021/acs.est.5b05387
Martínez MA, Rovira J, Prasad Sharma R, Nadal M, Schuhmacher M, Kumar V. Comparing dietary and non-dietary source contribution of BPA and DEHP to prenatal exposure: A Catalonia (Spain) case study. Environ Res. 2018;166:25–34.
doi: 10.1016/j.envres.2018.05.008
Pacyga DC, Sathyanarayana S, Strakovsky RS. Dietary Predictors of Phthalate and Bisphenol Exposures in Pregnant Women. Adv Nutr. 2019;10:803–15.
doi: 10.1093/advances/nmz029
Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res Int. 2015;22:5711–41.
doi: 10.1007/s11356-014-3974-5
Mercogliano R, Santonicola S. Investigation on bisphenol A levels in human milk and dairy supply chain: a review. Food Chem Toxicol. 2018;114:98–107.
doi: 10.1016/j.fct.2018.02.021
Liao C, Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agric Food Chem. 2013;61:4655–62.
doi: 10.1021/jf400445n
Qiu C, Hatton R, Li Q, Xv J, Li J, Tian J, et al. Associations of parental feeding practices with children’s eating behaviors and food preferences: a Chinese cross-sectional study. BMC Pediatr. 2023;23:84.
doi: 10.1186/s12887-023-03848-y
Sánchez-García R, Reyes-Morales H, González-Unzaga MA. Preferencias alimentarias y estado de nutrición en niños escolares de la Ciudad de México. Bol Med Hosp Infant Mex. 2014;71:358–66.
EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015;13:3978.
doi: 10.2903/j.efsa.2015.3978
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, et al. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2023;21:e06857.
Agencia Española de Seguridad Alimentria y Nutrición (AESAN). Preguntas y Respuestas sobre el Bisfenol A. 2021. Available from: https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/gestion_riesgos/Preguntas_respuestas_bisfenol_A.pdf .
García-Mayor RV, Larrañaga Vidal A, Docet Caamaño MF, Lafuente iménez A. Disruptores endocrinos y obesidad: obesógenos. Endocrinol Nutr. 2012;59:261–7 A.
doi: 10.1016/j.endonu.2011.11.008
Melough MM, Maffini MV, Otten JJ, Sathyanarayana S. Diet quality and exposure to endocrine-disrupting chemicals among US adults. Environ Res. 2022;211: 113049.
doi: 10.1016/j.envres.2022.113049
Martínez-González MA, De la Fuente-Arillaga C, Wärnberg J. Epidemiologia nutricional. In: Conceptos de Salud Pública y Estrategias Preventivas. Un Manual Para Ciencias de la Salud, 1st ed.; Martínez-González, M.A., Ed.; Elsevier España SL: Barcelona, Spain; 2013; pp. 337–341.
Lucarini F, Gasco R, Staedler D. Simultaneous Quantification of 16 Bisphenol Analogues in Food Matrices. Toxics. 2023;11: 665.
doi: 10.3390/toxics11080665
Gálvez-Ontiveros Y, Moscoso-Ruiz I, Almazán Fernández de Bobadilla V, Monteagudo C, Giménez-Martínez R, Rodrigo L, et al. Levels of Bisphenol A and its analogs in nails, saliva, and urine of children: a case control study. Front Nutr. 2023;10:1226820.
Pan Y, Zhu J, Zhu Z, Wei X, Zhou X, Yin R, et al. Occurrence of multiple bisphenol S analogues in children from Shantou. China Environ Int. 2023;174:107926.
doi: 10.1016/j.envint.2023.107926
Wan Y-P, Ma Q-G, Hayat W, Liu Z-H, Dang Z. Ten bisphenol analogues in Chinese fresh dairy milk: high contribution ratios of conjugated form, importance of enzyme hydrolysis and risk evaluation. Environ Sci Pollut Res Int. 2023;30:88049–59.
doi: 10.1007/s11356-023-28737-w
Andújar N, Gálvez-Ontiveros Y, Zafra-Gómez A, Rodrigo L, Álvarez-Cubero MJ, Aguilera M, et al. Bisphenol a analogues in food and their hormonal and obesogenic effects: a review. Nutrients. 2019;11: 2136.
doi: 10.3390/nu11092136
Rochester JR, Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol a substitutes. Environ Health Perspect. 2015;123:643–50.
doi: 10.1289/ehp.1408989