Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans.
Humans
Insulin Resistance
Muscle, Skeletal
/ metabolism
Oxidative Stress
/ drug effects
Oxidation-Reduction
Mitochondria
/ metabolism
Male
Insulin
/ metabolism
Ubiquinone
/ analogs & derivatives
Glucose Transporter Type 4
/ metabolism
Organophosphorus Compounds
/ pharmacology
Glucose
/ metabolism
Antioxidants
/ pharmacology
Adult
Lipids
Mitochondria, Muscle
/ metabolism
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
Nov 2024
Nov 2024
Historique:
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
ppublish
Résumé
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H
Identifiants
pubmed: 39475607
doi: 10.1126/sciadv.adq4461
doi:
Substances chimiques
Insulin
0
Ubiquinone
1339-63-5
mitoquinone
47BYS17IY0
Glucose Transporter Type 4
0
Organophosphorus Compounds
0
Glucose
IY9XDZ35W2
Antioxidants
0
Lipids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM