Uniform PtCoRuRhFe high-entropy alloy nanoflowers: Multi-site synergistic signal amplification for colorimetric assay of captopril.


Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
30 10 2024
Historique:
received: 26 08 2024
accepted: 03 10 2024
medline: 31 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

Uniform PtCoRuRhFe high-entropy alloy nanoflowers (HEANFs) were fabricated by a simple wet-chemical co-reduction method in oleylamine for quantitative colorimetric determination of captopril (CAP) based on multi-site synergistic signal amplification. Specifically, the peroxidase mimetic activity of the PtCoRuRhFe HEANFs was examined through catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation, whose catalytic mechanism was investigated by electron paramagnetic resonance (EPR) spectroscopy. The role of the ·O

Identifiants

pubmed: 39476168
doi: 10.1007/s00604-024-06746-x
pii: 10.1007/s00604-024-06746-x
doi:

Substances chimiques

Captopril 9G64RSX1XD
Alloys 0
3,3',5,5'-tetramethylbenzidine 3B3T5CB8EO
Benzidines 0
Platinum 49DFR088MY
Iron E1UOL152H7

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

717

Subventions

Organisme : National Natural Science Foundation of China
ID : 22204143

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Mohammed SAD, Liu H, Baldi S, Wang Y, Chen P, Lu F, Liu S (2023) Antihypertensive, antioxidant, and renal protective impact of integrated GJD with captopril in spontaneously hypertensive rats. Sci Rep 13:10944
pubmed: 37414816 pmcid: 10326066 doi: 10.1038/s41598-023-38020-0
Hashemi F, Rastegarzadeh S, Pourreza N (2018) Response surface methodology optimized dispersive liquid–liquid microextraction coupled with surface plasmon resonance of silver nanoparticles as colorimetric probe for determination of captopril. Sens Actuators, B 256:251–260
doi: 10.1016/j.snb.2017.09.178
Shi Y, Peng J, Meng XY, Huang T, Zhang JY, He H (2018) Turn-on fluorescent detection of captopril in urine samples based on hydrophilic hydroxypropyl β-cyclodextrin polymer. Anal Bioanal Chem 410:7373–7384
pubmed: 30191274 doi: 10.1007/s00216-018-1343-9
Gatti R, Morigi R (2017) 1,4-Anthraquinone: a new useful pre-column reagent for the determination of N-acetylcysteine and captopril in pharmaceuticals by high performance liquid chromatography. J Pharm Biomed Anal 143:299–304
pubmed: 28633061 doi: 10.1016/j.jpba.2017.06.011
Wu ML, Lv YT, Lin ZH (2022) Dual-mode colorimetric and fluorescence sensing system for the detection of captopril based on Fe/NC nanozymes and carbon dots. Spectrochim Acta, Part A 282:121683
doi: 10.1016/j.saa.2022.121683
Leng YM, Zhang FQ, Zhang YJ, Fu XQ, Weng YB, Chen L, Wu AG (2012) A rapid and sensitive colorimetric assay method for Co2+ based on the modified Au nanoparticles (NPs): understanding the involved interactions from experiments and simulations. Talanta 94:271–277
pubmed: 22608447 doi: 10.1016/j.talanta.2012.03.039
Gao ZQ, Liu GG, Ye HH, Rauschendorfer R, Tang DP, Xia XH (2017) Facile colorimetric detection of silver ions with picomolar sensitivity. Anal Chem 89:3622–3629
pubmed: 28238258 doi: 10.1021/acs.analchem.6b05026
Zhang Y, He SD, Simpson BK (2018) Enzymes in food bioprocessing—novel food enzymes, applications, and related techniques. Curr Opin Food Sci 19:30–35
doi: 10.1016/j.cofs.2017.12.007
Liu LX, Zhou SH, Deng Y (2020) The 3-ketoacyl-CoA thiolase: an engineered enzyme for carbon chain elongation of chemical compounds. Appl Microbiol Biotechnol 104:8117–8129
pubmed: 32830293 doi: 10.1007/s00253-020-10848-w
Cotabarren J, Broitman DJ, Quiroga E, Obregón WD (2020) GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int J Biol Macromol 148:869–879
pubmed: 31981666 doi: 10.1016/j.ijbiomac.2020.01.214
Luo JNH, Zhang XM, Wang XY, Pei JJ, Zhao LG (2023) Directional preparation of indigo or indirubin from indican by an alkali-resistant glucosidase under specific pH and temperature. Process Biochem 125:239–247
doi: 10.1016/j.procbio.2022.12.015
Xu JY, Liu HJ, Liu JQ, He Y, Gao J, Shi JF, Jiang YJ (2020) Design and construction of enzyme–nanozyme integrated catalyst as a multifunctional detection platform. Ind Eng Chem Res 59:20646–20655
doi: 10.1021/acs.iecr.0c04094
Guo ZJ, Hong JJ, Song NN, Liang MM (2024) Single-atom nanozymes: from precisely engineering to extensive applications. Acc Mater Res 5:347–357
doi: 10.1021/accountsmr.3c00250
Deshwal A, Saxena K, Sharma G, Rajesh SFA, Seth CS, Tripathi RM (2024) Nanozymes: a comprehensive review on emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol 256:128272
pubmed: 38000568 doi: 10.1016/j.ijbiomac.2023.128272
Jiang B, Fang L, Wu KM, Yan XY, Fan KL (2020) Ferritins as natural and artificial nanozymes for theranostics. Theranostics 10:687–706
pubmed: 31903145 pmcid: 6929972 doi: 10.7150/thno.39827
Wu YD, Chen WJ, Wang C, Xing DM (2024) Nanozyme-activating prodrug therapies: a review. Chin Chem Lett 35:109096
doi: 10.1016/j.cclet.2023.109096
Momeni F, Khoshfetrat SM, Zarei K (2023) Electrochemical sandwich-type aptasensor based on the multifunctional catechol-loaded Au/MIL-53(Fe) for detection of cardiac troponin I. ACS Appl Nano Mater 6:19239–19248
doi: 10.1021/acsanm.3c03705
Wu WW, Huang L, Wang EK, Dong SJ (2020) Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem Sci 11:9741–9756
pubmed: 34094238 pmcid: 8162425 doi: 10.1039/D0SC03522J
Khoshfetrat SM, Chegeni I (2023) Rational design of Ti3C2 MXene nanocomposite with bromophenol blue for efficient signal amplification: sensitive electrochemical detection of cardiac troponin I in patient plasma. Sens Actuators, B 397:134668
doi: 10.1016/j.snb.2023.134668
Huang ZY, Chen YY, Hao LY, Hua YJ, Lei BX, Liu ZQ (2024) Corner-sharing tetrahedrally coordinated W-V dual active sites on Cu2V2O7 for photoelectrochemical water oxidation. Small 20:2307547
doi: 10.1002/smll.202307547
Wang L, Miao LF, Yang H, Yu J, Xie YZ, Xu LJ, Song YH (2017) A novel nanoenzyme based on Fe3O4 nanoparticles@thionine-imprinted polydopamine for electrochemical biosensing. Sens Actuators, B 253:108–114
doi: 10.1016/j.snb.2017.06.132
Liu XY, Shen CY, Yu KD, Huang J, Leng YM, Wang G, Chen ZB (2023) Colorimetric sensing platform for detecting mercury Ions based on self-assembly of a two-dimensional Au nanoparticle layer. ACS Appl Nano Mater 6:20338–20345
doi: 10.1021/acsanm.3c04266
Liu D, Liu HH, Ning SS, Chu YH (2020) Chrysanthemum-like high-entropy diboride nanoflowers: a new class of high-entropy nanomaterials. J Adv Ceram 9:339–348
doi: 10.1007/s40145-020-0373-x
Sheng R, Liu Y, Cai TM, Wang R, Yang G, Wen T, Ning FJ, Peng HL (2024) Ultrafine FeCuAgCeGd–based high–entropy nanozyme: preparation, catalytic mechanism, and point–of–care detection of dopamine in human serum. Chem Eng J 485:149913
doi: 10.1016/j.cej.2024.149913
Feng JX, Yang XW, Du T, Zhang L, Zhang PF, Zhuo JC, Luo LP, Sun H, Han YR, Liu LZ, Shen YZ, Wang JL, Zhang WT (2023) Transition metal high-entropy nanozyme: multi-site orbital coupling modulated high-efficiency peroxidase mimics. Adv Sci 10:2303078
doi: 10.1002/advs.202303078
Chen JQ, Liu XY, Zheng GC, Feng W, Wang P, Gao J, Liu JB, Wang MZ, Wang QY (2023) Detection of glucose based on noble metal nanozymes: mechanism, activity regulation, and enantioselective recognition. Small 19:2205924
doi: 10.1002/smll.202205924
Sheng R, Liu Y, Cai TM, Wang R, Yang G, Wen T, Ning FJ, Peng HL (2024) Ultrafine FeCuAgCeGd-based high-entropy nanozyme: preparation, catalytic mechanism, and point-of-care detection of dopamine in human serum. Chem Eng J 485:149913
doi: 10.1016/j.cej.2024.149913
Chen Q, Liu ML, Zhao JN, Peng X, Chen XJ, Mi NX, Yin BD, Li HT, Zhang YY, Yao SZ (2014) Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose. Chem Commun 50:6771–6774
doi: 10.1039/C4CC01703J
Facure MHM, Andre RS, Mercante LA, Correa DS (2022) Colorimetric detection of antioxidants in food samples using MnO2/graphene quantum dot composites with oxidase-like activity. ACS Appl Nano Mater 5:15211–15219
doi: 10.1021/acsanm.2c03340
Leng YM, Xie K, Ye LQ, Li GQ, Lu ZW, He JB (2015) Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum. Talanta 139:89–95
pubmed: 25882412 doi: 10.1016/j.talanta.2015.02.038
Mao YW, Zhang JX, Chen DN, Wang AJ, Feng JJ (2022) Bimetallic PtFe alloyed nanoparticles decorated on 3D hollow N-doped carbon nanoflowers as efficient electrochemical biosensing interfaces for ultrasensitive detection of SCCA. Sens Actuators, B 370:132416
doi: 10.1016/j.snb.2022.132416
Xin Y, Li SH, Qian YY, Zhu WK, Yuan HB, Jiang PY, Guo RH, Wang LB (2020) High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal 10:11280–11306
doi: 10.1021/acscatal.0c03617
Zhu YP, Yang L, Wang AJ, Feng JJ (2023) Graphitic carbon-coated PtCoNi alloys supported on N-doped porous carbon nanoflakes for sensitive detection of bisphenol A. ACS Appl Nano Mater 6:8726–8734
doi: 10.1021/acsanm.3c01113
Lin SY, Chen YP, Cao Y, Zhang L, Feng JJ, Wang AJ (2022) Aminouracil-assisted synthesis of CoFe decorated bougainvillea-like N-doped carbon nanoflowers for boosting Zn–air battery and water electrolysis. J Power Sources 521:230926
doi: 10.1016/j.jpowsour.2021.230926
Xu C, Ma WJ, Wang HZ, Shao LH, Li WQ, Yu P, Mao LQ (2024) Graphdiyne oxide substrate-enhanced peroxidase-mimicking performance of Ru nanoparticles with physiological pH preference. Nano Res 17:1123–1131
doi: 10.1007/s12274-023-5931-4
Yan Q, Wang XY, Feng JJ, Mei LP, Wang AJ (2021) Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: a highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. J Colloid Interface Sci 582:701–710
pubmed: 32911415 doi: 10.1016/j.jcis.2020.08.062
Wang XY, Han Z, Duan JJ, Feng JJ, Huang H, Wang AJ (2020) Facile construction of 3D hyperbranched PtRh nanoassemblies: a bifunctional electrocatalyst for hydrogen evolution and polyhydric alcohol oxidation reactions. Int J Hydrogen Energy 45:8433–8443
doi: 10.1016/j.ijhydene.2020.01.009
Jiang ZF, Tian FM, Fang KM, Wang ZG, Zhang L, Feng JJ, Wang AJ (2025) Atomically dispersed ternary FeCoNb active sites anchored on N-doped honeycomb-like mesoporous carbon for highly catalytic degradation of 4-nitrophenol. J Colloid Interface Sci 677:718–728
pubmed: 39121656 doi: 10.1016/j.jcis.2024.08.027
Xu F, Xu BF, Ai QY, Wang AJ, Mei LP, Song P, Feng JJ (2024) Synergistic signal amplification of ultrathin nanowire-like PtCoFeRuMo high-entropy nanozyme and Z-scheme WO3/ZnIn2S4 heterostructure for split-typed photoelectrochemical aptasensing of myoglobin. Chem Eng J 489:151374
doi: 10.1016/j.cej.2024.151374
Guo JY, Dong CX, Zhang X, Liu YJ, Leng YM, Wang G, Chen ZB (2024) Colorimetric sensors constructed with one dimensional PtNi nanowire and Pt nanowire nanozymes for Hg2+ detection. Anal Chim Acta 1321:343039
pubmed: 39155104 doi: 10.1016/j.aca.2024.343039
Nguyen T-B, Sherpa K, Chen C-W, Chen L, Dong C-D (2023) Breakthroughs and prospects in ruthenium-based electrocatalyst for hydrogen evolution reaction. J Alloys Compd 968:172020
doi: 10.1016/j.jallcom.2023.172020
Zhao H, Liu MY, Wang QS, Li YZ, Chen YB, Zhu YP, Yue ZY, Li J, Wang GL, Zou ZQ, Cheng QQ, Yang H (2024) Strong transboundary electron transfer of high-entropy quantum-dots driving rapid hydrogen evolution kinetics. Energy Environ Sci 17:6594
doi: 10.1039/D4EE01825G
Lv YP, Lin LL, Xue RX, Zhang PF, Ma FY, Gan T, Zhang JW, Gao DW, Zheng XB, Wang LG, Qin YC, Zhao H, Dong YM, Wang Y, Zhu YF (2024) Electronegativity induced d-band center offset for Pt-Rh dual sites in high-entropy alloy boosts liquid fuels electrooxidation. Adv Energy Mater 14:2304515
doi: 10.1002/aenm.202304515
Sun JH, Li CY, Qi YF, Guo SL, Liang X (2016) Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sensors 16:584
pubmed: 27110794 pmcid: 4851098 doi: 10.3390/s16040584
Razavi M, Barras A, Ifires M, Swaidan A, Khoshkam M, Szunerits S, Kompany-Zareh M, Boukherroub R (2022) Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi2Fe4O9) nanoparticles as an efficient peroxidase-mimic nanozyme. J Colloid Interface Sci 613:384–395
pubmed: 35042036 doi: 10.1016/j.jcis.2022.01.041
Xu S, Zhang SY, Li YT, Liu JY (2023) Facile synthesis of iron and nitrogen co-doped carbon dot nanozyme as highly efficient peroxidase mimics for visualized detection of metabolites. Molecules 28:6064
pubmed: 37630318 pmcid: 10458983 doi: 10.3390/molecules28166064
Lu YY, Shen NT, Xi YC, Zhu T, Peng H, Zhong LH, Li F (2023) Bioenzyme-free colorimetric assay for creatinine determination based on Mn3O4 nanoparticles catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine. Microchim Acta 191:44
doi: 10.1007/s00604-023-06129-8
Ge J, Yuan YT, Yang H, Deng RJ, Li ZH, Yang Y (2024) Smartphone-assisted colorimetric sensor based on single-atom Cu–C–N nanozyme for mercury (II) ions detection. Mater Today Chem 37:102037
doi: 10.1016/j.mtchem.2024.102037
Borthakur P, Darabdhara G, Das MR, Boukherroub R, Szunerits S (2017) Solvothermal synthesis of CoS/reduced porous graphene oxide nanocomposite for selective colorimetric detection of Hg(II) ion in aqueous medium. Sens Actuators, B 244:684–692
doi: 10.1016/j.snb.2016.12.148
Gao LN, Chu Y, Zhang RZ, Xue K, Liu QY (2024) Montmorillonite-supported Ru-doped CuBi2O4 nanozyme with enhanced peroxidase-like activity for sensitive determination of hydroquinone. Appl Organomet Chem 38:e7598
doi: 10.1002/aoc.7598
Fu QJ, Wang N, Zhou CY, Su XG (2024) High performance boron doped peroxidase-like nanozyme Cu/B-NC for detection of epinephrine and catalase. Talanta 266:124991
pubmed: 37516071 doi: 10.1016/j.talanta.2023.124991
Jiang XH, Qin DM, Mo GC, Feng JS, Zheng XF, Deng BY (2019) Facile preparation of boron and nitrogen codoped green emission carbon quantum dots for detection of permanganate and captopril. Anal Chem 91:11455–11460
pubmed: 31397151 doi: 10.1021/acs.analchem.9b02938
Guo YY, Zhang JB, Liu JY, Wang N, Su XG (2023) A highly sensitive fluorescence “on–off–on” sensing platform for captopril detection based on AuNCs@ZIF-8 nanocomposite. Anal Chim Acta 1276:341649
pubmed: 37573126 doi: 10.1016/j.aca.2023.341649
Chen WT, Chiang CK, Lin YW, Chang HT (2010) Quantification of captopril in urine through surface-assisted laser desorption/ionization mass spectrometry using 4-mercaptobenzoic acid-capped gold nanoparticles as an internal standard. J Am Soc Mass Spectrom 21:864–867
pubmed: 20171117 doi: 10.1016/j.jasms.2010.01.023
Liu Q, Liu Y, Wan Q, Lu QR, Liu J, Ren YG, Tang JC, Su Q, Luo YP (2023) Label-free, reusable, equipment-free, and visual detection of hydrogen sulfide using a colorimetric and fluorescent dual-mode sensing platform. Anal Chem 95:5920–5926
pubmed: 36989391 doi: 10.1021/acs.analchem.2c05364
Mehdi Khoshfetrat S, Moradi M, Zhaleh H, Hosseini M (2024) Multifunctional methyl orange-delaminated Ti3C2 MXene for non-enzymatic/metal-free electrochemical detection of hydrogen peroxide and hydrazine. Microchem J 205:111382
doi: 10.1016/j.microc.2024.111382
Khoshfetrat SM, Fasihi K, Moradnia F, KamilZaidan H, Sanchooli E (2023) A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe2O4@UiO-66 nanozyme. Anal Chim Acta 1252:341073
pubmed: 36935160 doi: 10.1016/j.aca.2023.341073

Auteurs

Rui Zhang (R)

Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.

Jia-Qi Li (JQ)

Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.

Ai-Jun Wang (AJ)

Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.

Pei Song (P)

Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China. peisong@zju.edu.cn.
College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China. peisong@zju.edu.cn.

Wen Liu (W)

Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan, 430071, China. liuwen9207@163.com.

Jiu-Ju Feng (JJ)

College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China. jjfeng@zjnu.cn.

Tuck Yun Cheang (TY)

Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China. TYCheang@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH