Opportunities for CRISPR-Cas9 application in farm animal genetic improvement.
CRISPR-Cas9
Farm animals
Gene expression
Genetic improvements
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
12
09
2024
accepted:
22
10
2024
medline:
31
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
CRISPR-Cas9 has emerged as a powerful tool in livestock breeding, enabling precise genetic modifications to address genetic diseases, enhance productivity, and develop disease-resistant animal breeds. A thorough analysis of previous research highlights the potential of CRISPR-Cas9 in overcoming genetic disorders by targeting specific mutations in genes. Furthermore, its integration with reproductive biotechnologies and genomic selection facilitates the production of gene-edited animals with high genomic value, contributing to genetic enhancement and improved productivity. Additionally, CRISPR-Cas9 opens new avenues for developing disease-resistant livestock and creating innovative breeding models for high-quality production. A key trend in the field is the development of multi-sgRNA vectors to correct mutations in various genes linked to productivity traits or certain diseases within individual genomes, thereby increasing resistance in animals. However, despite the potential advantages of CRISPR-Cas9, public acceptance of genetically modified agricultural products remains uncertain. Would consumers be willing to purchase such products? It is essential to advocate for bold and innovative research into genetically edited animals, with a focus on safety, careful promotion, and strict regulatory oversight to align with long-term goals and public acceptance. Continued advancements in this technology and its underlying mechanisms promise to improve poultry products and genetically modified livestock. Overall, CRISPR-Cas9 technology offers a promising pathway for advancing livestock breeding practices, with opportunities for genetic improvement, enhanced disease resistance, and greater productivity.
Identifiants
pubmed: 39476174
doi: 10.1007/s11033-024-10052-3
pii: 10.1007/s11033-024-10052-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1108Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Gao F, Hou N, Du X, Wang Y, Zhao J, Wu S (2023) Molecular breeding of farm animals through gene editing. Nat Sci Open 2(5):20220066
doi: 10.1360/nso/20220066
Kappes A, Tozooneyi T, Shakil G, Railey AF, McIntyre KM, Mayberry DE, Rushton J, Pendell DL, Marsh TL (2023) Livestock health and disease economics: a scoping review of selected literature. Front Vet Sci 10:1168649
pubmed: 37795016
doi: 10.3389/fvets.2023.1168649
Railey AF, Lankester F, Lembo T, Reeve R, Shirima G, Marsh TL (2019) Enhancing livestock vaccination decision-making through rapid diagnostic testing. World Dev Perspect 16:100144
pubmed: 32201751
doi: 10.1016/j.wdp.2019.100144
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA (2021) Improvements in gene editing technology boost its applications in livestock. Front Genet 11:614688
pubmed: 33603767
doi: 10.3389/fgene.2020.614688
Du Y, Liu Y, Hu J, Peng X, Liu Z (2023) CRISPR/Cas9 systems: delivery technologies and biomedical applications. Asian J Pharm Sci 100854
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A (2024) Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 23(1):9
pubmed: 38195537
doi: 10.1186/s12943-023-01925-5
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T (2023) CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 8(1):36
pubmed: 36646687
doi: 10.1038/s41392-023-01309-7
Lin Y, Li J, Li C, Tu Z, Li S, Li XJ, Yan S (2022) Application of CRISPR/Cas9 system in establishing large animal models. Front Cell Dev Biol 10:919155
pubmed: 35656550
doi: 10.3389/fcell.2022.919155
Dalvie NC, Lorgeree T, Biedermann AM, Love KR, Love JC (2021) Simplified gene knockout by CRISPR-Cas9-induced homologous recombination. ACS Synth Biol 11(1):497–501
pubmed: 34882409
doi: 10.1021/acssynbio.1c00194
Xu Y, Li Z (2020) CRISPR-Cas systems: overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 18:2401–2415
pubmed: 33005303
doi: 10.1016/j.csbj.2020.08.031
Badon IW, Oh Y, Kim HJ, Lee SH (2024) Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol Ther 32(1):32–43
pubmed: 37952084
doi: 10.1016/j.ymthe.2023.11.013
Zhu Y, Huang Z (2019) Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Nat Sci Rev 6(3):438–451
doi: 10.1093/nsr/nwy150
Wada N, Osakabe K, Osakabe Y (2022) Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems. Plant Physiol 188(4):1825–1837
pubmed: 35099553
doi: 10.1093/plphys/kiac027
Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D, Chulanov V (2022) CRISPR-Cas systems for diagnosing infectious diseases. Methods 203:431–446
pubmed: 33839288
doi: 10.1016/j.ymeth.2021.04.007
Wang S, Qu Z, Huang Q, Zhang J, Lin S, Yang Y, Meng F, Li J, Zhang K (2022) Application of gene editing technology in resistance breeding of livestock. Life 12(7):1070
pubmed: 35888158
doi: 10.3390/life12071070
Pelea O, Fulga TA, Sauka-Spengler T (2022) RNA-responsive gRNAs for controlling CRISPR activity: current advances, future directions, and potential applications. CRISPR J 5(5):642–659
pubmed: 36206027
doi: 10.1089/crispr.2022.0052
Asmamaw M, Zawdie B (2021) Mechanism and applications of CRISPR/ Cas-9-mediated genome editing. Biol: Targets Ther 15:353–361
Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529
pubmed: 28375731
doi: 10.1146/annurev-biophys-062215-010822
Qiao H, Wu J, Zhang X, Luo J, Wang H, Ming D (2021) The advance of CRISPR-Cas9-based and NIR/CRISPR-Cas9-based imaging system. Front Chem 9:786354
pubmed: 34976954
doi: 10.3389/fchem.2021.786354
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S (2019) Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 37(5):708–729
pubmed: 30926472
doi: 10.1016/j.biotechadv.2019.03.016
Davidson AR, Lu WT, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ (2020) Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu Rev Biochem 89:309–332
pubmed: 32186918
doi: 10.1146/annurev-biochem-011420-111224
Zhu Y (2022) Advances in CRISPR/Cas9. BioMed Res Int 2022
Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L (2019) PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol 16(4):504–517
pubmed: 30109815
doi: 10.1080/15476286.2018.1504546
Liu Y, Cao Z, Wang Y, Guo Y, Xu P, Yuan P, Liu Z, He Y, Wei W (2018) Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol 36(12):1203–1210
doi: 10.1038/nbt.4283
Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N (2020) Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci 21(18):6461
pubmed: 32899704
pmcid: 7555059
doi: 10.3390/ijms21186461
Gonen S, Jenko J, Gorjanc G, Mileham AJ, Whitelaw CBA, Hickey JM (2017) Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs. Genet Sel Evol 49:1–14
Ruan J, Xu J, Chen-Tsai RY, Li K (2017) Genome editing in livestock: are we ready for a revolution in animal breeding industry? Transgenic Res 26:715–726
pubmed: 29094286
doi: 10.1007/s11248-017-0049-7
Vigneshwar R, Imayarasi K (2021) Applications of CRISPR/Cas9 genome Editing Technology in Veterinary Medicine. Sci World 1(4):7–12
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M (2022) CRISPR-Cas9-based technology and its relevance to gene editing in Parkinson’s disease. Pharmaceutics 14(6):1252
pubmed: 35745824
pmcid: 9229276
doi: 10.3390/pharmaceutics14061252
Ansori AN, Antonius Y, Susilo RJ, Hayaza S, Kharisma VD, Parikesit AA, Zainul R, Jakhmola V, Saklani T, Rebezov M, Ullah ME (2023) Application of CRISPR-Cas9 genome editing technology in various fields: a review. Narra J 3(2):e184
pubmed: 38450259
doi: 10.52225/narra.v3i2.184
Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE (2022) CRISPR in cancer biology and therapy. Nat Rev Cancer 22(5):259–279
pubmed: 35194172
doi: 10.1038/s41568-022-00441-w
Lu Z, Zhang L, Mu Q, Liu J, Chen Y, Wang H, Zhang Y, Su R, Wang R, Wang Z, Lv Q (2024) Progress in Research and prospects for application of Precision Gene-Editing Technology based on CRISPR–Cas9 in the genetic improvement of Sheep and Goats. Agriculture 14(3):487
doi: 10.3390/agriculture14030487
Tulu B, Zewede A, Belay M, Zeleke M, Girma M, Tegegn M, Ibrahim F, Jolliffe DA, Abebe M, Balcha TT, Gumi B (2021) Epidemiology of bovine tuberculosis and its zoonotic implication in Addis Ababa Milkshed, Central Ethiopia. Front Vet Sci 8:595511
pubmed: 33681321
doi: 10.3389/fvets.2021.595511
Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y (2017) Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18:1–15
doi: 10.1186/s13059-016-1144-4
Yuan M, Zhang J, Gao Y, Yuan Z, Zhu Z, Wei Y, Wu T, Han J, Zhang Y (2021) HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis. J Biol Chem 296
Singh P, Ali SA (2021) Impact of CRISPR-Cas9-based genome engineering in farm animals. Vet Sci 8(7):122
pubmed: 34209174
doi: 10.3390/vetsci8070122
Szillat KP, Koethe S, Wernike K, Höper D, Beer M (2020) A CRISPR/Cas9 generated bovine CD46-knockout cell line a tool to elucidate the adaptability of bovine viral diarrhea viruses (BVDV). Viruses 12(8):859
pubmed: 32781607
doi: 10.3390/v12080859
Wang T, Gao YP, Han J, Zhang JC, Li XH, He TY, Cao GF (2021) Research progress on the application of CRISPR/Cas9 gene editing technology in livestock. Prog Vet Med 42:78–84
Gu MJ, Gao L, Zhou XY, Wu D, Wei ZY, Li GP, Bai CL (2020) Fixed-point editing of POLLED sites in Mongolian cattle without horns. J Agric Biotechnol 28:242–250
Schuster F, Aldag P, Frenzel A, Hadeler KG, Lucas-Hahn A, Niemann H, Petersen B (2020) CRISPR/Cas12a mediated knock-in of the polled celtic variant to produce a polled genotype in dairy cattle. Sci Rep 10(1):13570
pubmed: 32782385
doi: 10.1038/s41598-020-70531-y
Zhao X, Nie J, Tang Y, He W, Xiao K, Pang C, Liang X, Lu Y, Zhang M (2020) Generation of transgenic cloned buffalo embryos harboring the EGFP gene in the Y chromosome using CRISPR/Cas9-mediated targeted integration. Front Vet Sci 7:199
pubmed: 32426378
doi: 10.3389/fvets.2020.00199
Simmet K, Zakhartchenko V, Philippou-Massier J, Blum H, Klymiuk N, Wolf E (2018) OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc Natl Acad Sci 115(11):2770–2775
pubmed: 29483258
doi: 10.1073/pnas.1718833115
Daigneault BW, Rajput S, Smith GW, Ross PJ (2018) Embryonic POU5F1 is required for expanded bovine blastocyst formation. Sci Rep 8(1):7753
pubmed: 29773834
doi: 10.1038/s41598-018-25964-x
Camargo LSA, Owen JR, Van Eenennaam AL, Ross PJ (2020) Efficient one-step knockout by electroporation of ribonucleoproteins into zona-intact bovine embryos. Front Genet 11:570069
pubmed: 33133156
doi: 10.3389/fgene.2020.570069
Zonaed Siddiki AMAM, Miah G, Islam MS, Kumkum M, Rumi MH, Baten A, Hossain MA (2020) Goat genomic
Zhang R, Li Y, Jia K, Xu X, Li Y, Zhao Y, Zhang X, Zhang J, Liu G, Deng S, Lian Z (2020) Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep. Cell Death Dis 11(5):407
pubmed: 32472005
doi: 10.1038/s41419-020-2622-x
Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, Yu H, Lei A, Yan H, Shen Q, Shi L (2016) Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS ONE 11(10):e0164640
pubmed: 27755602
doi: 10.1371/journal.pone.0164640
Zhang R, Wu H, Lian Z (2019) Bioinformatics analysis of evolutionary characteristics and biochemical structure of FGF5 gene in sheep. Gene 702:123–132
pubmed: 30926307
doi: 10.1016/j.gene.2019.03.040
Li X, Hao F, Hu X, Wang H, Dai B, Wang X, Liang H, Cang M, Liu D (2019) Generation of Tβ4 knock-in Cashmere goat using CRISPR/Cas9. Int J Biol Sci 15(8):1743
pubmed: 31360116
doi: 10.7150/ijbs.34820
Hao F, Yan W, Li X, Wang H, Wang Y, Hu X, Liu X, Liang H, Liu D (2018) Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-mediated genome editing. Int J Biol Sci 14(4):427
pubmed: 29725264
pmcid: 5930475
doi: 10.7150/ijbs.23890
Li XC (2017) CRISPR/Cas9 Mediated Tβ4 Gene Targeted Knocking in Cashmere Goats. Master’s Thesis, Inner Mongolia University, Hohhot, China
Hu R, Fan ZY, Wang BY, Deng SL, Zhang XS, Zhang JL, Han HB, Lian ZX (2017) RAPID COMMUNICATION: generation of FGF5 knockout sheep via the CRISPR/Cas9 system. J Anim Sci 95(5):2019–2024
pubmed: 28727005
Zhang X, Li W, Liu C, Peng X, Lin J, He S, Li X, Han B, Zhang N, Wu Y, Chen L (2017) Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci Rep 7(1):8149
pubmed: 28811591
doi: 10.1038/s41598-017-08636-0
Wang HT, Li TT, Huang X, Ma RL, Liu QY (2021) Application of genetic modification technologies in molecular design breeding of sheep. Yi Chuan = Hereditas 43(6):580–600
pubmed: 34284989
Wan Y, Guo R, Deng M, Liu Z, Pang J, Zhang G, Wang Z, Wang F (2019) Efficient generation of CLPG1-edited rabbits using the CRISPR/Cas9 system. Reprod Domest Anim 54(3):538–544
pubmed: 30570178
doi: 10.1111/rda.13394
Zhang Y, Wang Y, Yulin B, Tang B, Wang M, Zhang C, Zhang W, Jin J, Li T, Zhao R, Yu X (2019) CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation. J Cell Biochem 120(2):1794–1806
pubmed: 30242885
doi: 10.1002/jcb.27474
Zhou S, Kalds P, Luo Q, Sun K, Zhao X, Gao Y, Cai B, Huang S, Kou Q, Petersen B, Chen Y (2022) Optimized Cas9: sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics 23(1):348
pubmed: 35524183
doi: 10.1186/s12864-022-08594-6
Zhou S, Yu H, Zhao X, Cai B, Ding Q, Huang Y, Li Y, Li Y, Niu Y, Lei A, Kou Q (2018) Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reprod Fert Develop 30(12):1616–1621
doi: 10.1071/RD18086
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y (2019) Sheep and goat genome engineering: from random transgenesis to the CRISPR era. Front Genet 10:750
pubmed: 31552084
doi: 10.3389/fgene.2019.00750
Niu Y, Zhao X, Zhou J, Li Y, Huang Y, Cai B, Liu Y, Ding Q, Zhou S, Zhao J, Zhou G (2018) Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reprod Fert Develop 30(2):307–312
doi: 10.1071/RD17068
Zhang X, Li W, Wu Y, Peng X, Lou B, Wang L, Liu M (2017) Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos. Theriogenol 91:163–172
doi: 10.1016/j.theriogenology.2016.10.025
Tian H, Luo J, Zhang Z, Wu J, Zhang T, Busato S, Huang L, Song N, Bionaz M (2018) CRISPR/Cas9-mediated stearoyl-CoA desaturase 1 (SCD1) deficiency affects fatty acid metabolism in goat mammary epithelial cells. J Agric Food Chem 66(38):10041–10052
pubmed: 30180552
doi: 10.1021/acs.jafc.8b03545
Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F (2017) Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS ONE 12(10):e0186056
pubmed: 29016691
doi: 10.1371/journal.pone.0186056
Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G (2018) Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep 8(1):7661
pubmed: 29769555
doi: 10.1038/s41598-018-25654-8
Zhang Y, Wang Y, Wang X, Ji Y, Cheng S, Wang M, Zhang C, Yu X, Zhao R, Zhang W, Jin J (2019) Acetyl-Coenzyme A acyltransferase 2 promote the differentiation of sheep precursor adipocytes into adipocytes. J Cell Biochem 120(5):8021–8031
pubmed: 30485515
doi: 10.1002/jcb.28080
Ma T, Tao J, Yang M, He C, Tian X, Zhang X, Zhang J, Deng S, Feng J, Zhang Z, Wang J (2017) An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. J Pineal Res 63(1):e12406
doi: 10.1111/jpi.12406
Fan Z, Yang M, Regouski M, Polejaeva IA (2019) Gene knockouts in goats using CRISPR/Cas9 system and somatic cell nuclear transfer. Microinjection: Methods Protocols 1874:373–390
Menchaca A, Dos Santos-Neto PC, Souza-Neves M, Cuadro F, Mulet AP, Tesson L, Chenouard V, Guiffès A, Heslan JM, Gantier M, Anegón I (2020) Otoferlin gene editing in sheep via CRISPR-assisted ssODN-mediated homology directed repair. Sci Rep 10(1):5995
pubmed: 32265471
doi: 10.1038/s41598-020-62879-y
Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL, Polejaeva IA (2018) A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI insight 3(19)
Williams DK, Pinzón C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH, Westhusin ME (2018) Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep 8(1):16945
pubmed: 30446691
doi: 10.1038/s41598-018-35079-y
Khwatenge CN, Nahashon SN (2021) Recent advances in the application of CRISPR/Cas9 gene editing system in poultry species. Front Genet 12:627714
pubmed: 33679892
doi: 10.3389/fgene.2021.627714
Larkina T, Krutikova A, Peglivanyan G, Shcherbakov Y, Barkova O (2021) Development of optimal technological approaches for obtaining PGCs in Pushkin breed chickens for further transformation by the CRISPR/Cas9 system. FASEB J 35(S1):05031
Lee J, Kim DH, Lee K (2020) Current approaches and applications in avian genome editing. Int J Mol Sci 21(11):3937
pubmed: 32486292
doi: 10.3390/ijms21113937
Ballantyne M, Woodcock M, Doddamani D, Hu T, Taylor L, Hawken RJ, McGrew MJ (2021) Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating. Nat Commun 12(1):659
pubmed: 33510156
doi: 10.1038/s41467-020-20812-x
Lin X, Li S, Jin ZD, Geng TY, Gong DQ, Liu L (2021) Progress in functional research of DMRT1 and FOXL2 genes in animal sex determination. China Poult 43:98–105
Ioannidis J, Taylor G, Zhao D, Liu L, Idoko-Akoh A, Gong D, Lovell-Badge R, Guioli S, McGrew MJ, Clinton M (2021) Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proc Natl Acad Sci 118(10):e2020909118
pubmed: 33658372
doi: 10.1073/pnas.2020909118
Zhang Y, Wang Y, Zuo Q, Li D, Zhang W, Wang F, Ji Y, Jin J, Lu Z, Wang M, Zhang C (2017) CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation. PLoS ONE 12(2):e0172207
pubmed: 28234938
doi: 10.1371/journal.pone.0172207
Chen CW, Li J, Zhao RP, Li ZX (2023) Research progress of CRISPR/Cas9 technology in chicken genetic breeding. China Poult 45:96–103
Xu K, Han CX, Zhou H, Ding JM, Xu Z, Yang LY, He C, Akinyemi F, Zheng YM, Qin C, Luo HX (2020) Effective MSTN gene knockout by AdV-delivered CRISPR/Cas9 in postnatal chick leg muscle. Int J Mol Sci 21(7):2584
pubmed: 32276422
doi: 10.3390/ijms21072584
Wang JP, Lu HZ, Zhang T, Wang L (2022) Research progress on the application of CRISPR/Cas9 technology in chicken anti viral infection. Heilongjiang J Anim Sci Vet Med 28:34–41
Liu Y, Xu Z, Zhang Y, Yu M, Wang S, Gao Y, Liu C, Zhang Y, Gao L, Qi X, Cui H (2020) Marek’s disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Vet Microbiol 242:108589
pubmed: 32122593
doi: 10.1016/j.vetmic.2020.108589
Koslová A, Trefil P, Mucksová J, Reinišová M, Plachý J, Kalina J, Kučerová D, Geryk J, Krchlíková V, Lejčková B, Hejnar J (2020) Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc Natl Acad Sci 117(4):2108–2112
pubmed: 31964810
doi: 10.1073/pnas.1913827117
Park YH, Woo SJ, Chungu K, Lee SB, Shim JH, Lee HJ, Kim I, Rengaraj D, Song CS, Suh JY, Lim JM (2021) Asp149 and Asp152 in chicken and human ANP32A play an essential role in the interaction with influenza viral polymerase. FASEB J 35(6):e21630
pubmed: 33982347
doi: 10.1096/fj.202002006RR
Hellmich R, Sid H, Lengyel K, Flisikowski K, Schlickenrieder A, Bartsch D, Thoma T, Bertzbach LD, Kaufer BB, Nair V, Preisinger R (2020) Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line. Front Genome Ed 2:3
pubmed: 34713212
doi: 10.3389/fgeed.2020.00003
Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR (2020) Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Sci Rep 10(1):7411
pubmed: 32366884
doi: 10.1038/s41598-020-62723-3
Moro LN, Viale DL, Bastón JI, Arnold V, Suvá M, Wiedenmann E, Olguín M, Miriuka S, Vichera G (2020) Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Sci Rep 10(1):15587
pubmed: 32973188
doi: 10.1038/s41598-020-72040-4
Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB (2016) Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6(1):21284
pubmed: 26888627
doi: 10.1038/srep21284
Zhang J, Song F, Sun Y, Yu K, Xiang J (2018) CRISPR/Cas9-mediated deletion of EcMIH shortens metamorphosis time from mysis larva to postlarva of Exopalaemon carinicauda. Fish Shellfish Immunol 77:244–251
pubmed: 29621632
doi: 10.1016/j.fsi.2018.04.002
Gratacap RL, Regan T, Dehler CE, Martin SA, Boudinot P, Collet B, Houston RD (2020) Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol 20:1–9
doi: 10.1186/s12896-020-00626-x
Datsomor AK, Zic N, Li K, Olsen RE, Jin Y, Vik JO, Edvardsen RB, Grammes F, Wargelius A, Winge P (2019) CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Sci Rep 9(1):7533
pubmed: 31101849
pmcid: 6525179
doi: 10.1038/s41598-019-43862-8
Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K (2017) Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep 7(1):7301
pubmed: 28779173
pmcid: 5544710
doi: 10.1038/s41598-017-07223-7
Zheng J, Liu S, Jiang W, Li F, Chi M, Cheng S, Liu Y (2023) CRISPR/Cas9-mediated mutation of Mstn confers growth performance in Culter alburnus juveniles. Aquac Fish
Asmamaw Mengstie M, Teshome Azezew M, Asmamaw Dejenie T, Teshome AA, Tadele Admasu F, Behaile Teklemariam A, Tilahun Mulu A, Mekonnen Agidew M, Adugna DG, Geremew H, Abebe EC (2024) Recent Advancements in Reducing the Off-Target Effect of CRISPR-Cas9 Genome Editing. Biol: Targets Ther 31:21 – 8
Prosman A (2021) The ethics of genome editing of animals
Gabr H, El Ghamrawy MK, Almaeen AH, Abdelhafiz AS, Hassan AOS, El Sissy MH (2020) CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Stem cell Res Ther 11:1–8
doi: 10.1186/s13287-020-01876-4
Assem SK, Basry MA, Taha TA, Abd El-Aziz MH, Alwa T, Fouad WM (2023) Development of an in vitro regeneration system from immature inflorescences and CRISPR/Cas9-mediated gene editing in sudangrass. J Genet Eng Biotechnol 21(1):58
pubmed: 37184575
pmcid: 10185720
doi: 10.1186/s43141-023-00517-6