Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study.


Journal

European radiology experimental
ISSN: 2509-9280
Titre abrégé: Eur Radiol Exp
Pays: England
ID NLM: 101721752

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 03 07 2024
accepted: 04 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Extensive glioblastoma infiltration justifies a 15-mm margin around the gross tumor volume (GTV) to define the radiotherapy clinical target volume (CTV). Amide proton transfer (APT)-weighted imaging could enable visualization of tumor infiltration, allowing more accurate GTV delineation. We quantified the impact of integrating APT-weighted imaging into GTV delineation of glioblastoma and compared two APT-weighted quantification methods-magnetization transfer ratio asymmetry (MTR Nine glioblastoma patients underwent an extended imaging protocol prior to radiotherapy, yielding APT-weighted MTR The GTV Larger biological GTVs compared to the conventional GTV highlight the potential of APT-weighted imaging for radiotherapy target delineation of glioblastoma. APT-weighted LD mapping may be advantageous for target delineation as it may be more robust against motion artifacts. The introduction of APT-weighted imaging may, ultimately, enhance visualization of tumor infiltration and eliminate the need for the substantial 15-mm safety margin for target delineation of glioblastoma. This could reduce the risk of radiation toxicity while still effectively irradiating the tumor. NCT05970757 (ClinicalTrials.gov). Integration of APT-weighted imaging into target delineation for radiotherapy is feasible. The integration of APT-weighted imaging yields larger GTVs in glioblastoma. APT-weighted LD mapping may be more robust against motion artifacts than APT-weighted MTR

Sections du résumé

BACKGROUND BACKGROUND
Extensive glioblastoma infiltration justifies a 15-mm margin around the gross tumor volume (GTV) to define the radiotherapy clinical target volume (CTV). Amide proton transfer (APT)-weighted imaging could enable visualization of tumor infiltration, allowing more accurate GTV delineation. We quantified the impact of integrating APT-weighted imaging into GTV delineation of glioblastoma and compared two APT-weighted quantification methods-magnetization transfer ratio asymmetry (MTR
METHODS METHODS
Nine glioblastoma patients underwent an extended imaging protocol prior to radiotherapy, yielding APT-weighted MTR
RESULTS RESULTS
The GTV
CONCLUSION CONCLUSIONS
Larger biological GTVs compared to the conventional GTV highlight the potential of APT-weighted imaging for radiotherapy target delineation of glioblastoma. APT-weighted LD mapping may be advantageous for target delineation as it may be more robust against motion artifacts.
RELEVANCE STATEMENT CONCLUSIONS
The introduction of APT-weighted imaging may, ultimately, enhance visualization of tumor infiltration and eliminate the need for the substantial 15-mm safety margin for target delineation of glioblastoma. This could reduce the risk of radiation toxicity while still effectively irradiating the tumor.
TRIAL REGISTRATION BACKGROUND
NCT05970757 (ClinicalTrials.gov).
KEY POINTS CONCLUSIONS
Integration of APT-weighted imaging into target delineation for radiotherapy is feasible. The integration of APT-weighted imaging yields larger GTVs in glioblastoma. APT-weighted LD mapping may be more robust against motion artifacts than APT-weighted MTR

Identifiants

pubmed: 39477835
doi: 10.1186/s41747-024-00523-4
pii: 10.1186/s41747-024-00523-4
doi:

Substances chimiques

Amides 0
Protons 0

Banques de données

ClinicalTrials.gov
['NCT05970757']

Types de publication

Clinical Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

123

Informations de copyright

© 2024. The Author(s).

Références

Tamimi AF, Juweid M (2017) Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S (ed) Glioblastoma. Codon Publications, Brisbane. https://doi.org/10.15586/codon.glioblastoma.2017.ch8
Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330
doi: 10.1056/NEJMoa043330 pubmed: 15758009
Niyazi M, Andratschke N, Bendszus M et al (2023) ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 184:109663. https://doi.org/10.1016/j.radonc.2023.109663
doi: 10.1016/j.radonc.2023.109663 pubmed: 37059335
Stummer W (2007) Mechanisms of tumor-related brain edema. Neurosurg Focus 22:E8. https://doi.org/10.3171/foc.2007.22.5.9
doi: 10.3171/foc.2007.22.5.9 pubmed: 17613239
Gebhardt BJ, Dobelbower MC, Ennis WH, Bag AK, Markert JM, Fiveash JB (2014) Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide. Radiat Oncol 9:130. https://doi.org/10.1186/1748-717X-9-130
doi: 10.1186/1748-717X-9-130 pubmed: 24906388 pmcid: 4055938
Kumar N, Kumar R, Sharma SC et al (2020) Impact of volume of irradiation on survival and quality of life in glioblastoma: a prospective, phase 2, randomized comparison of RTOG and MDACC protocols. Neurooncol Pract 7:86–93. https://doi.org/10.1093/nop/npz024
doi: 10.1093/nop/npz024 pubmed: 32257287
Tu Z, Xiong H, Qiu Y, Li G, Wang L, Peng S (2021) Limited recurrence distance of glioblastoma under modern radiotherapy era. BMC Cancer 21:720. https://doi.org/10.1186/s12885-021-08467-3
doi: 10.1186/s12885-021-08467-3 pubmed: 34154559 pmcid: 8218451
Zheng L, Zhou ZR, Yu Q et al (2020) The definition and delineation of the target area of radiotherapy based on the recurrence pattern of glioblastoma after temozolomide chemoradiotherapy. Front Oncol 10:615368. https://doi.org/10.3389/fonc.2020.615368
doi: 10.3389/fonc.2020.615368 pubmed: 33692942
Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–S27. https://doi.org/10.1016/j.ijrobp.2009.02.091
doi: 10.1016/j.ijrobp.2009.02.091 pubmed: 20171513 pmcid: 3554255
Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126. https://doi.org/10.1002/mrm.10651
doi: 10.1002/mrm.10651 pubmed: 14648559
Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441–448. https://doi.org/10.1093/neuonc/not158
doi: 10.1093/neuonc/not158 pubmed: 24305718
Su C, Liu C, Zhao L et al (2017) Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: comparison with Ki-67 expression and proton MR spectroscopy imaging. AJNR Am J Neuroradiol 38:1702–1709. https://doi.org/10.3174/ajnr.A5301
doi: 10.3174/ajnr.A5301 pubmed: 28729292 pmcid: 7963688
Jiang S, Eberhart CG, Zhang Y et al (2017) Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer 83:9–18. https://doi.org/10.1016/j.ejca.2017.06.009
doi: 10.1016/j.ejca.2017.06.009 pubmed: 28704644 pmcid: 5572540
Tang PLY, Méndez Romero A, Jaspers JPM, Warnert EAH (2022) The potential of advanced MR techniques for precision radiotherapy of glioblastoma. MAGMA 35:127–143. https://doi.org/10.1007/s10334-021-00997-y
doi: 10.1007/s10334-021-00997-y pubmed: 35129718 pmcid: 8901515
Zhou J, Zaiss M, Knutsson L et al (2022) Review and consensus recommendations on clinical APT-weighted imaging approaches at 3 T: application to brain tumors. Magn Reson Med 88:546–574. https://doi.org/10.1002/mrm.29241
doi: 10.1002/mrm.29241 pubmed: 35452155 pmcid: 9321891
Zaiß M, Schmitt B, Bachert P (2011) Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J Magn Reson 211:149–155. https://doi.org/10.1016/j.jmr.2011.05.001
doi: 10.1016/j.jmr.2011.05.001 pubmed: 21641247
Zhang J, Zhu W, Tain R, Zhou XJ, Cai K (2018) Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-spectrum. Mol Imaging Biol 20:623–631. https://doi.org/10.1007/s11307-017-1154-y
doi: 10.1007/s11307-017-1154-y pubmed: 29313159 pmcid: 11443608
Warnert EAH, Wood TC, Incekara F et al (2022) Mapping tumour heterogeneity with pulsed 3D CEST MRI in non-enhancing glioma at 3 T. MAGMA 35:53–62. https://doi.org/10.1007/s10334-021-00911-6
doi: 10.1007/s10334-021-00911-6 pubmed: 33606114
Wu Y, Wood TC, Derks S et al (2023) Reproducibility of APT-weighted CEST-MRI at 3 T in healthy brain and tumor across sessions and scanners. Sci Rep 13:18115. https://doi.org/10.1038/s41598-023-44891-0
doi: 10.1038/s41598-023-44891-0 pubmed: 37872418 pmcid: 10593824
Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106
doi: 10.1093/neuonc/noab106 pubmed: 34185076 pmcid: 8328013
Deshmane A, Zaiss M, Lindig T et al (2019) 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3 T. Magn Reson Med 81:2412–2423. https://doi.org/10.1002/mrm.27569
doi: 10.1002/mrm.27569 pubmed: 30431179
Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841. https://doi.org/10.1006/nimg.2002.1132
doi: 10.1006/nimg.2002.1132 pubmed: 12377157
Isensee F, Schell M, Pflueger I et al (2019) Automated brain extraction of multisequence MRI using artificial neural networks. Human Brain Mapp 40:4952–4964. https://doi.org/10.1002/hbm.24750
doi: 10.1002/hbm.24750
Smith SM, Brady JM (1997) SUSAN—a new approach to low level image processing. Int J Comput Vision 23:45–78. https://doi.org/10.1023/A:1007963824710
doi: 10.1023/A:1007963824710
Vervliet N, Debals O, Sorber L, Van Barel M, De Lathauwer L (2016) Tensorlab 3.0. Available via https://www.tensorlab.net
Schüre J-R, Casagranda S, Sedykh M et al (2024) Fluid suppression in amide proton transfer-weighted (APTw) CEST imaging: new theoretical insights and clinical benefits. Magn Reson Med 91:1354–1367. https://doi.org/10.1002/mrm.29915
doi: 10.1002/mrm.29915 pubmed: 38073061
Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156. https://doi.org/10.1016/s1361-8415(01)00036-6
doi: 10.1016/s1361-8415(01)00036-6 pubmed: 11516708
Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740. https://doi.org/10.1016/S1470-2045(19)30098-1
doi: 10.1016/S1470-2045(19)30098-1 pubmed: 30952559
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 18:203–211. https://doi.org/10.1038/s41592-020-01008-z
Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57. https://doi.org/10.1109/42.906424
doi: 10.1109/42.906424 pubmed: 11293691
van Zijl PCM, Yadav NN (2011) Chemical exchange saturation transfer (CEST): What is in a name and what isn’t? Magn Reson Med 65:927–948. https://doi.org/10.1002/mrm.22761
doi: 10.1002/mrm.22761 pubmed: 21337419 pmcid: 3148076
Yuan Y, Yu Y, Guo Y et al (2022) Noninvasive delineation of glioma infiltration with combined 7 T chemical exchange saturation transfer imaging and MR spectroscopy: a diagnostic accuracy study. Metabolites. https://doi.org/10.3390/metabo12100901
Kruser TJ, Bosch WR, Badiyan SN et al (2019) NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J Neurooncol 143:157–166. https://doi.org/10.1007/s11060-019-03152-9
doi: 10.1007/s11060-019-03152-9 pubmed: 30888558 pmcid: 6483830

Auteurs

Patrick L Y Tang (PLY)

Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Alejandra Méndez Romero (AM)

Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Remi A Nout (RA)

Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Caroline van Rij (C)

Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Cleo Slagter (C)

Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Annemarie T Swaak-Kragten (AT)

Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Marion Smits (M)

Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Medical Delta, Delft, The Netherlands.

Esther A H Warnert (EAH)

Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands. e.warnert@erasmusmc.nl.
Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. e.warnert@erasmusmc.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH