In vitro gas production, in situ digestibility, intake, weight gain and ruminal characteristics of calves fed a diet containing 60% waste papaya silage.
Dry tropics
Feeding alternatives
Fruit overproduction
Non-conventional silage
Journal
Tropical animal health and production
ISSN: 1573-7438
Titre abrégé: Trop Anim Health Prod
Pays: United States
ID NLM: 1277355
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
22
01
2024
accepted:
21
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Our aim was to evaluate a whole-grain diet containing 0 (T1) and 60% (T2) waste papaya silage in vitro, in situ and in vivo. In vitro, biogas, methane and dry matter degradation (DMDiv), neutral detergent fiber (NDFDiv) and crude protein (CPDiv) were determined at 72 h; in situ, DM (DMDis), NDF (NDFis) and CP (CPDis) digestibility was determined at 72 h; in vivo, consumption and apparent digestibility of DM (DMI and DMD) and NDF (NDFI and NDFD), daily weight gain (DWG), rumen characteristics (pH, bacterial and protozoan counts) were determined. In addition, we performed coproparasitoscopic analysis and interviews with producers. Biogas production, methane, DMDiv, CDPiv, DMDis, DMD, NDFD, pH, bacterial and protozoan counts, and parasite load of nematodes and coccidia were not different between treatments (p > 0.05). T2 showed more NDFDiv, CPDis, DMI, NDFI, DWG than T1, while T1 was higher than T2 in NDFDis (p < 0.05). The results obtained from in vitro, in situ and in vivo techniques indicate that the diet with 60% waste papaya silage (T2) showed a similar response to the control diet (T1). Therefore, waste papaya silage is a non-conventional feeding alternative for weaned calves in the Costa Chica region of the state of Guerrero, Mexico.
Identifiants
pubmed: 39477871
doi: 10.1007/s11250-024-04219-0
pii: 10.1007/s11250-024-04219-0
doi:
Substances chimiques
Methane
OP0UW79H66
Biofuels
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
370Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Abdukarim YH, Sali K (2019) Factors affecting rumen microbial protein synthesis: a review. Vet Med – Open J 4:27–35
doi: 10.17140/VMOJ-4-133
Aguilera A, Pérez-Gil F, Grande D, de la Cruz I, Juárez J (1997) Digestibility and fermentative characteristics of mango, lemon and corn stover silages with or without addition of molasses and urea. Small Rumin Res 26:87–91
doi: 10.1016/S0921-4488(96)01001-2
Ameen SA, Adedeji OS, Ojedapo LO, Salihu T, Fabusuyi CO (2010) Anthelmintic Potency of Pawpaw (Carica papaya) Seeds in West African Dwarf (WAD) Sheep 6
AOAC (2005) Official methods of analysis, 18th edn. Arlington, VA, USA, Association of Official Analytical Chemist
Ash AJ, Elliott R (1991) Tropical crop and crop by-product additives can improve the quality of taro leaf (Colocasia esculenta) silage The Journal of Agricultural Science, 117, 233–239 (Cambridge University Press)
Beuvink JMW, Spoelstra SF (1992) Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl Microbiol Biotechnol 37:505–509
doi: 10.1007/BF00180978
Blümmel M, Makkar HPS, Becker K (1997) In vitro gas production: a technique revisited Journal Animal Physiologi and Animal. Nutrition 77:24–34
Broudiscou LP, Offner A, Sauvant D (2014) Effects of inoculum source, pH, redox potential and headspace di-hydrogen on rumen in vitro fermentation yields. Animal 8:931–937
pubmed: 24679594
doi: 10.1017/S1751731114000640
Bueno AVI, Lazzari G, Jobim CC, Daniel JLP (2020) Ensiling total mixed ration for ruminants: a review. Agronomy 10:879
doi: 10.3390/agronomy10060879
Cañaveral-Martínez UR, Sánchez-Santillán P, Torres-Salado N, Hernández-Sánchez D, Herrera-Pérez J, Ayala-Monter MA (2023) Effect of waste mango silage on the in vitro gas production, in situ digestibility, intake, apparent digestibility, and ruminal characteristics in calf diets. Vet World 16:421–430
pubmed: 37041828
pmcid: 10082734
doi: 10.14202/vetworld.2023.421-430
Carbajal-Márquez U, Sánchez-Santillán P, Rojas-García AR, Ayala-Monter MA, Mendoza-Núñez MA, Hernández-Valenzuela D (2021) Effect of parota (Enterolobium cyclocarpum) pod protein supplement on feed intake and digestibility and calf ruminal characteristics. Trop Anim Health Prod 53:323
pubmed: 33991243
doi: 10.1007/s11250-021-02772-6
Charlier J, Höglund J, Morgan ER, Geldhof P, Vercruysse J, Claerebout E (2020) Biology and epidemiology of gastrointestinal nematodes in cattle. Vet Clin North Am Food Anim Pract 36:1–15
pubmed: 32029177
doi: 10.1016/j.cvfa.2019.11.001
Chavira JS (2016) Potential use of nonconventional silages in ruminant feeding for tropical and subtropical areas In:, T. da Silva and S. E. Mauro (eds), Advances in Silage Production and Utilization, (IntechOpen), 85–98
Chengxing H, Yanli G, Xiaofang C, Ruixing Y (2022) Starch properties, nutrients profiles, in vitro ruminal fermentation and molecular structure of corn processed in different ways fermentation Fermentation, 8, 315 (Multidisciplinary Digital Publishing Institute)
Chukwuka KS, Iwuagwu M, Uka UN (2013) Evaluation of nutritional components of Carica papaya L. at different stages of ripening. J Pharm Biol Sci 6:13–16
Corona-Palazuelos MB, Murillo-Ayala EX, Castro-del Campo N, Romo-Rubio JA, Cervantes-Pacheco BJ, Gaxiola-Camacho SM, Barajas-Cruz (2016) Influencia de la adición de extractos de taninos al inicio de la engorda en la carga por nemátodos en becerros en corral Agrociencia, 50, 1013–1025 (Colegio de Postgraduados)
da Silva CZ, Ítavo LCV, Ítavo CCBF, dos Santos GT, Dias AM, dos Santos Difante G, Gurgel ALC (2021) Kinetics of In vitro gas production and fitting mathematical models of corn silage Fermentation, 7, 298 (Multidisciplinary Digital Publishing Institute)
Daş G, Klauser S, Stehr M, Tuchscherer A, Metges CC (2020) Accuracy and precision of McMaster and Mini-FLOTAC egg counting techniques using egg-spiked faeces of chickens and two different flotation fluids. Vet Parasitol 283:109158
pubmed: 32544762
doi: 10.1016/j.vetpar.2020.109158
Ellis JL, Alaiz-Moretón H, Navarro-Villa A, McGeough EJ, Purcell P, Powell CD, O’Kiely P, France J, López S (2020) pplication of meta-analysis and machine learning methods to the prediction of methane production from in vitro mixed ruminal micro-organism Animals, 10, 720 (Multidisciplinary Digital Publishing Institute)
Espinoza-Sánchez J, Sánchez-Santillán P, Torres-Salado N, Ayala-Monter MA, Herrera-Pérez J, Magadan-Olmedo F (2020) Inclusion of ripe mango as a source of energy in diets for Creole lambs in the dry tropics. Trop Anim Health Prod 52:3519–3526
pubmed: 32954474
doi: 10.1007/s11250-020-02386-4
Fazzio LE, Sánchez RO, Streitenberger N, Galvan WR, Giudici CJ, Gimeno EJ (2014) The effect of anthelmintic resistance on the productivity in feedlot cattle. Vet Parasitol 206:240–245
pubmed: 25468022
doi: 10.1016/j.vetpar.2014.10.010
García MME, González CVH, Atariguana EGC, Núñez QTC, Pesántez FF, González K (2019) Evaluación In vitro del potencial antihelmíntico de extractos de Plantago major y semillas de Carica papaya, usando como modelo experimental Caenorhabditis elegans. Ciencia e Investigación 22:9–16
doi: 10.15381/ci.v22i2.17610
García-Rodríguez J, Ranilla MJ, France J, Alaiz-Moretón H, Carro MD, López S (2019) Chemical composition, in vitro digestibility and rumen fermentation kinetics of agro-industrial by-products. Animals 9:861
pubmed: 31653022
pmcid: 6912480
doi: 10.3390/ani9110861
Getachew G, Robinson PH, DePeters EJ, Taylor SJ (2004) Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim Feed Sci Technol 111:57–71
doi: 10.1016/S0377-8401(03)00217-7
Getachew G, DePeters EJ, Robinson PH (2004) In vitro gas production provides effective method for assessing ruminant feeds. Calif Agric 58
Gorocica-Buenfil MA, Loerch SC (2005) Effect of cattle age, forage level, and corn processing on diet digestibility and feedlot performance. J Anim Sci 83:705–714
pubmed: 15705768
doi: 10.2527/2005.833705x
Hansen J, Perry B (1994) The epidemiology, diagnosis and control of helminth parasites of ruminants, (ILRAD)
Hassan Z, Nisa M, Shahzad MA, Sarwar M (2011) Replacing concentrate with wheat straw treated with urea molasses and ensiled with manure: Effects on ruminal characteristics, in situ digestion kinetics and nitrogen metabolism of nili-ravi buffalo bulls. Asian-Australas J Anim Sci 24:1092–1099
doi: 10.5713/ajas.2011.10337
Hernández-Morales J, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez J, Rojas-García AR, Reyes-Vázquez I, Mendoza-Núñez MA (2018) Composición Química y Degradaciones in Vitro De Vainas y Hojas De Leguminosas Arbóreas Del Trópico Seco De México. Revista Mexicana De Ciencias Pecuarias 9:105–120
doi: 10.22319/rmcp.v9i1.4332
Hoffman PC, Lundberg LM, Shaver RD, Contreras-Govea FE (2007) El Efecto de la madurez en la digestibilidad del FDN (fibra detergente neutro). Focus Forage 15:1–2
INAFED (2022) Guerrero - Cuajinicuilapa
Keith EA, Colenbrander VF, Perry TW, Bauman LF (1981) Performance of feedlot cattle fed brown midrib-three or normal corn silage with various levels of additional corn grain. J Anim Sci 52:8–13
doi: 10.2527/jas1981.5218
Kermanshai R, McCarry BE, Rosenfeld J, Summers PS, Weretilnyk EA, Sorger GJ (2001) Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57:427–435
pubmed: 11393524
doi: 10.1016/S0031-9422(01)00077-2
Kumar PC, Salem AZM, Jena R, Kumar S, Singh R, Puniya AK (2015) Rumen Microbiology: An Overview In:, A. K. Puniya , R. Singh , and D. N. Kamra (eds), Rumen Microbiology: From Evolution to Revolution, (Springer India: New Delhi), 3–16
Kung L, Shaver RD, Grant RJ, Schmidt RJ (2018) Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci 101:4020–4033
pubmed: 29685275
doi: 10.3168/jds.2017-13909
Lavrenčič A, Stefanon B, Susmel P (1997) An evaluation of the Gompertz model in degradability studies of forage chemical components. Anim Sci 64:423–431
doi: 10.1017/S1357729800016027
Lobo RR, Faciola AP (2021) Ruminal phages – a review. Front Microbiol 12:763416
pubmed: 34956125
pmcid: 8692978
doi: 10.3389/fmicb.2021.763416
Lopes F, Ruh K, Combs DK (2015) Validation of an approach to predict total-tract fiber digestibility using a standardized in vitro technique for different diets fed to high-producing dairy cows. J Dairy Sci 98:2596–2602 (Elsevier)
Łozicki A, Koziorzębska A, Halik G, Dymnicka M, Arkuszewska E, Niemiec T, Bogdan J (2015) Effect of ensiling pumpkin (Cucurbita maxima D.) with dried sugar beet pulp on the content of bioactive compounds in silage and its antioxidant potential. Anim Feed Sci Technol 206:108–113
doi: 10.1016/j.anifeedsci.2015.05.012
Malla BA, Rastogi A, Sharma RK, Ishfaq A, Farooq J (2015) Kinnow madarin (Citrus nobilis lour × Citrus deliciosa tenora) fruit waste silage as potential feed for small ruminants. Vet World 8:19–23
pubmed: 27046989
pmcid: 4777804
doi: 10.14202/vetworld.2015.19-23
Mazzenga A, Gianesella M, Brscic M, Cozzi G (2009) Feeding behaviour, diet digestibility, rumen fluid and metabolic parameters of beef cattle fed total mixed rations with a stepped substitution of wheat straw with maize silage. Livest Sci 122:16–23
doi: 10.1016/j.livsci.2008.07.015
McDonald I (1981) A revised model for the estimation of protein degradability in the rumen. J Agric Sci 96:251–252 (Cambridge University Press)
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 (American Chemical Society)
Mir Z, Mir PS (1994) Effect of the addition of live yeast (Saccharomyces cerevisiae) on growth and carcass quality of steers fed high-forage or high-grain diets and on feed digestibility and in situ degradability. J Anim Sci 72:537–545
pubmed: 8181967
doi: 10.2527/1994.723537x
Modzelewska-Kapituła M, Tkacz K, Więk A, Rybaczek S, Nogalski Z (2021) Sida silage in cattle nutrition – effects on the fattening performance of Holstein-Friesian bulls and beef quality. Livest Sci 243:104383
doi: 10.1016/j.livsci.2020.104383
Montero ML, Rojas-Garbanzo C, Usaga J, Pérez AM (2022) Composición nutricional, contenido de compuestos bioactivos y capacidad antioxidante hidrofílica de frutas costarricenses seleccionadas. Agron Mesoam 33:46175
doi: 10.15517/am.v33i2.46175
Newbold CJ, Ramos-Morales E (2020) Review: ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal 14:s78–s86 (Cambridge University Press)
Nousiainen J, Rinne M, Huhtanen P (2009) A meta-analysis of feed digestion in dairy cows. 1. The effects of forage and concentrate factors on total diet digestibility. J Dairy Sci 92:5019–5030 (Elsevier)
Ørskov ER, McDonald I (1979) The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci 92:499–503
doi: 10.1017/S0021859600063048
Paya H, Taghizadeh A, Lashkari S, Shirmohammadi S (2012) Evaluation of rumen fermentation kinetics of some by-products using in situ and in vitro gas production technique Slovak. J Anim Sci 45:7
Peng K, Gresham GL, McAllister TA, Xu Z, Iwaasa A, Schellenberg M, Chaves AV, Wang Y (2020) Effects of inclusion of purple prairie clover (Dalea purpurea Vent.) with native cool-season grasses on in vitro fermentation and in situ digestibility of mixed forages. J Anim Sci Biotechnol 11:23
pubmed: 32082566
pmcid: 7020374
doi: 10.1186/s40104-019-0418-6
Peyrat J, Nozière P, Le Morvan A, Férard A, Protin PV, Baumont R (2014) Effects of ensiling maize and sample conditioning on in situ rumen degradation of dry matter, starch and fibre. Anim Feed Sci Technol 196:12–21
doi: 10.1016/j.anifeedsci.2014.06.017
Purwin C, Starczewski M, Borsuk M, Nogalski Z, Opyd PM, Mazur-Kuśnirek M, Białobrzewski I (2021) The quality, intake, and digestibility of virginia fanpetals (Sida hermaphrodita L. Rusby) silage produced under different technologies and its effect on the performance of young cattle. Animals 11:2270 (Multidisciplinary Digital Publishing Institute)
Refat B, Yu P (2016) Maximizing fiber utilization of silage in ruminants In:, T. da Silva and S. E. Mauro (eds), Advances in Silage Production and Utilization, (IntechOpen), 123–149
Riaz MQ, Südekum K-H, Clauss M, Jayanegara A (2014) Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis. Livest Sci 162:76–85
doi: 10.1016/j.livsci.2014.01.009
Rosero NR, Posada SO (2007) Modelación De La Cinética De Degradación De Alimentos Para Rumiantes. Rev Colomb Cienc Pecuarias 20:174–182
Sánchez-Santillán P, Cobos-Peralta MA, Hernández-Sánchez D, Álvarado-Iglesias A, Espinosa-Victoria D, Herrera-Haro JG (2016) Use of activated carbon to preserve lyophilized cellulolytic bacteria. Agrociencia 50:575–582
Sánchez-Santillán P, Herrera-Pérez J, Torres-Salado N, Almaraz-Buendía I, Reyes-Vázquez I, Rojas-García AR, Gómez-Trinidad M, Contreras-Ramírez EO, de Maldonado-Peralta M, de los Maldonado-Peralta MÁ, Magadan-Olmedo F (2020) Chemical composition, and in vitro fermentation of ripe mango silage with molasses. Agrofor Syst 94:1511–1519
doi: 10.1007/s10457-019-00442-z
SAS Institute Inc (2011) Statistical Analysis System, SAS, User’s Guide, (SAS Inst.: Cary, NC)
Sen D, Agnihotri RK, Sharma D (2020) Carica papaya L. (Caricacea) as herbal alternative to anthelmintics for the control of Ascaridia galli in poultry. Himachal J Agric Res 46:100–108
Seon-Ho K, Lovelia LM, Eun-Joong K, Ha-Guyn S, Gui-Seck, Kwang-Keun C, Chanhee L, Sang-Suk L (2018) Effect of different concentrate diet levels on rumen fluid inoculum used for determination of in vitro rumen fermentation, methane concentration, and methanogen abundance and diversity. Ital J Anim Sci 17:359–367 (Taylor & Francis)
SIAP (2022a) Anuario estadístico de la producción agricola
SIAP (2022b) Anuario estadístico de la producción ganadera
Silva de O, Santos EM, Maia dos APS (2016) Intake and Digestibility of Silages In:, T. Da Silva and E. M. Santos (eds), Advances in Silage Production and Utilization, (IntechOpen), 101–121
Silva, Pacheco MVC, Godoi LA, Silva FAS, Zanetti D, Menezes ACB, Pucetti P, Santos SA, Paulino MF, Filho SCV (2020) In situ and in vitro techniques for estimating degradation parameters and digestibility of diets based on maize or sorghum. J Agric Sci 158:150–158 (Cambridge University Press)
Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2006) In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris Parasitology, 132, 681–689 (Cambridge University Press)
Stolaroff JK, Keith DW, Lowry GV (2008) Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol 42:2728–2735 (American Chemical Society)
Torres-Salado N, Sánchez-Santillán P, Rojas-García AR, Herrera-Pérez J, Hernández-Morales J (2018) Producción de gases efecto invernadero in vitro de leguminosas arbóreas del trópico seco mexicano. Arch Zootec 67:55–59
doi: 10.21071/az.v67i257.3491
Valenzuela-Rodríguez EI, Pámanes-Carrasco GA, Mata-Escobedo MI, Medrano-Roldan H, Jáquez DR (2021) An in vitro and in situ evaluation of a diet for cattle added with organic oils. Agro Productividad. https://doi.org/10.32854/agrop.v14i12.2115
doi: 10.32854/agrop.v14i12.2115
Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. United States of America, Cornell University Press
doi: 10.7591/9781501732355
Van Keulen J, Young BA (1977) Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci 44:282–287
doi: 10.2527/jas1977.442282x
Villalba JJ, Provenza FD, Manteca X (2010) Links between ruminants’ food preference and their welfare. Animal 4:1240–1247
pubmed: 22444619
doi: 10.1017/S1751731110000467
Wahyudi A, Sujono S, Hendraningsih L, Prima A, Vincevica-Gaile Z, Zekker I (2021) Effect of urea in total mixed ration and its silage on friesian holstein bull calves productivity in tropic condition. Sarhad J Agric 37
Weimer PJ (2015) Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 6:296
pubmed: 25914693
pmcid: 4392294
doi: 10.3389/fmicb.2015.00296
Wimalasiri S, Somasiri SC (2021) Ensiled fruit peels of pineapple (Ananas comosus) and papaya (Carica papaya) as an animal feed In:, 2nd International Conference on Agriculture, Food Security and Safety,
Yang J, Tan H, Cai Y (2016) Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues. J Dairy Sci 99:5325–5334
pubmed: 27108171
doi: 10.3168/jds.2016-10952