Post-translational modifications of fibrinogen: implications for clotting, fibrin structure and degradation.
Fibrin
Fibrinogen
Post-translational modifications
Thrombosis
Journal
Molecular biomedicine
ISSN: 2662-8651
Titre abrégé: Mol Biomed
Pays: Singapore
ID NLM: 9918283581406676
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
16
07
2024
accepted:
24
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Fibrinogen, a blood plasma protein with a key role in hemostasis and thrombosis, is highly susceptible to post-translational modifications (PTMs), that significantly influence clot formation, structure, and stability. These PTMs, which include acetylation, amidation, carbamylation, citrullination, dichlorination, glycation, glycosylation, guanidinylation, hydroxylation, homocysteinylation, malonylation, methylation, nitration, oxidation, phosphorylation and sulphation, can alter fibrinogen biochemical properties and affect its functional behavior in coagulation and fibrinolysis. Oxidation and nitration are notably associated with oxidative stress, impacting fibrin fiber formation and promoting the development of more compact and resistant fibrin networks. Glycosylation and glycation contribute to altered fibrinogen structural properties, often resulting in changes in fibrin clot density and susceptibility to lysis, particularly in metabolic disorders like diabetes. Acetylation and phosphorylation, influenced by medications such as aspirin, modulate clot architecture by affecting fiber thickness and clot permeability. Citrullination and homocysteinylation, although less studied, are linked to autoimmune conditions and cardiovascular diseases, respectively, affecting fibrin formation and stability. Understanding these modifications provides insights into the pathophysiology of thrombotic disorders and highlights potential therapeutic targets. This review comprehensively examines the current literature on fibrinogen PTMs, their specific sites, biochemical pathways, and their consequences on fibrin clot architecture, clot formation and clot lysis.
Identifiants
pubmed: 39477884
doi: 10.1186/s43556-024-00214-x
pii: 10.1186/s43556-024-00214-x
doi:
Substances chimiques
Fibrin
9001-31-4
Fibrinogen
9001-32-5
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
45Subventions
Organisme : THE Tuscany Health Ecosystem
ID : CUP: B83C22003920001
Informations de copyright
© 2024. The Author(s).
Références
Wendelboe AM, Raskob GE. Global burden of thrombosis: epidemiologic aspects. Circ Res. 2016;118(9):1340–7. https://doi.org/10.1161/CIRCRESAHA.115.306841 .
doi: 10.1161/CIRCRESAHA.115.306841
pubmed: 27126645
Litvinov RI, Pieters M, de Lange-Loots Z, Weisel JW. Fibrinogen and fibrin. Subcell Biochem. 2021;96:471–501. https://doi.org/10.1007/978-3-030-58971-4_15 .
doi: 10.1007/978-3-030-58971-4_15
pubmed: 33252741
Chang JC. Novel classification of thrombotic disorders based on Molecular Hemostasis and Thrombogenesis Producing Primary and secondary phenotypes of thrombosis. Biomedicines. 2022;10(11): 2706. https://doi.org/10.3390/biomedicines10112706 .
doi: 10.3390/biomedicines10112706
pubmed: 36359229
pmcid: 9687744
Wolberg AS. Fibrinogen and fibrin: synthesis, structure, and function in health and disease. J Thromb Haemost. 2023;21(11):3005–15. https://doi.org/10.1016/j.jtha.2023.08.014 .
doi: 10.1016/j.jtha.2023.08.014
pubmed: 37625698
Dobson DA, Fish RJ, de Vries PS, Morrison AC, Neerman-Arbez M, Wolberg AS. Regul Fibrinogen Synth. Thromb Res. 2024;242: 109134. https://doi.org/10.1016/j.thromres.2024.109134 .
doi: 10.1016/j.thromres.2024.109134
pubmed: 39216273
Litvinov RI, Weisel JW. What is the biological and clinical relevance of Fibrin? Semin Thromb Hemost. 2016;42(4):333–43. https://doi.org/10.1055/s-0036-1571342 .
doi: 10.1055/s-0036-1571342
pubmed: 27056152
pmcid: 5536100
Eagle H, Harris TN, STUDIES IN BLOOD COAGULATION: V. THE COAGULATION OF BLOOD BY PROTEOLYTIC ENZYMES (TRYPSIN, PAPAIN). J Gen Physiol. 1937;20(4):543–60. https://doi.org/10.1085/jgp.20.4.543 .
doi: 10.1085/jgp.20.4.543
pubmed: 19873009
pmcid: 2141509
Ferry JD. The mechanism of polymerization of Fibrinogen. Proc Natl Acad Sci U S A. 1952;38(7):566–9. https://doi.org/10.1073/pnas.38.7.566 .
doi: 10.1073/pnas.38.7.566
pubmed: 16589147
pmcid: 1063615
Doolittle RF. The conversion of fibrinogen to fibrin: a brief history of some key events. Matrix Biol. 2017;60–61:5–7. https://doi.org/10.1016/j.matbio.2016.08.002 .
doi: 10.1016/j.matbio.2016.08.002
pubmed: 27519977
Bettiol A, Galora S, Argento FR, Fini E, Emmi G, Mattioli I, et al. Erythrocyte oxidative stress and thrombosis. Expert Rev Mol Med. 2022;24:e31. https://doi.org/10.1017/erm.2022.25 .
doi: 10.1017/erm.2022.25
pubmed: 36017709
pmcid: 9884766
Emmi G, Becatti M, Bettiol A, Hatemi G, Prisco D, Fiorillo C. Behçet’s syndrome as a model of Thrombo-Inflammation: the role of neutrophils. Front Immunol. 2019;10: 1085. https://doi.org/10.3389/fimmu.2019.01085 .
doi: 10.3389/fimmu.2019.01085
pubmed: 31139195
pmcid: 6527740
Gaule TG, Ajjan RA. Fibrin(ogen) as a therapeutic target: opportunities and challenges. Int J Mol Sci. 2021;22(13): 6916. https://doi.org/10.3390/ijms22136916 .
doi: 10.3390/ijms22136916
pubmed: 34203139
pmcid: 8268464
Brunclikova M, Simurda T, Zolkova J, Sterankova M, Skornova I, Dobrotova M, et al. Heterogeneity of genotype-phenotype in congenital hypofibrinogenemia-a review of case reports associated with bleeding and thrombosis. J Clin Med. 2022;11(4): 1083. https://doi.org/10.3390/jcm11041083 .
doi: 10.3390/jcm11041083
pubmed: 35207353
pmcid: 8874973
Simurda T, Brunclikova M, Asselta R, Caccia S, Zolkova J, Kolkova Z, et al. Genetic Variants in the FGB and FGG Genes Mapping in the Beta and Gamma Nodules of the Fibrinogen Molecule in Congenital Quantitative Fibrinogen Disorders Associated with a Thrombotic Phenotype. Int J Mol Sci. 2020;21(13):4616. https://doi.org/10.3390/ijms21134616 .
doi: 10.3390/ijms21134616
pubmed: 32610551
pmcid: 7369898
Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21(3):255–61. https://doi.org/10.1038/nbt0303-255 .
doi: 10.1038/nbt0303-255
pubmed: 12610572
Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods. 2007;4(10):798–806. https://doi.org/10.1038/nmeth1100 .
doi: 10.1038/nmeth1100
pubmed: 17901869
Henschen-Edman AH. Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease. Ann N Y Acad Sci. 2001;936:580–93. https://doi.org/10.1111/j.1749-6632.2001.tb03546.x .
doi: 10.1111/j.1749-6632.2001.tb03546.x
pubmed: 11460517
Ząbczyk M, Ariëns RAS, Undas A. Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice. Cardiovasc Res. 2023;119(1):94–111. https://doi.org/10.1093/cvr/cvad017 .
doi: 10.1093/cvr/cvad017
pubmed: 36662542
pmcid: 10377755
Protopopova AD, Barinov NA, Zavyalova EG, Kopylov AM, Sergienko VI, Klinov DV. Visualization of fibrinogen αC regions and their arrangement during fibrin network formation by high-resolution AFM. J Thromb Haemost. 2015;13(4):570–9. https://doi.org/10.1111/jth.12785 .
doi: 10.1111/jth.12785
pubmed: 25393591
Tsurupa G, Medved L. Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) alpha C-domains. Biochemistry. 2001;40(3):801–8. https://doi.org/10.1021/bi001789t .
doi: 10.1021/bi001789t
pubmed: 11170397
Tsurupa G, Tsonev L, Medved L. Structural organization of the fibrin(ogen) alpha C-domain. Biochemistry. 2002;41(20):6449–59. https://doi.org/10.1021/bi025584r .
doi: 10.1021/bi025584r
pubmed: 12009908
Xu RG, Gauer JS, Baker SR, Slater A, Martin EM, McPherson HR, et al. GPVI (glycoprotein VI) Interaction with Fibrinogen is mediated by avidity and the Fibrinogen αC-Region. Arterioscler Thromb Vasc Biol. 2021;41(3):1092–104. https://doi.org/10.1161/ATVBAHA.120.315030 .
doi: 10.1161/ATVBAHA.120.315030
pubmed: 33472402
pmcid: 7901536
Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015;126(5):683–91. https://doi.org/10.1182/blood-2015-02-629717 .
doi: 10.1182/blood-2015-02-629717
pubmed: 25977585
Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M, et al. Fibrin activates GPVI in human and mouse platelets. Blood. 2015;126(13):1601–8. https://doi.org/10.1182/blood-2015-04-641654 .
doi: 10.1182/blood-2015-04-641654
pubmed: 26282541
pmcid: 4582337
Induruwa I, Moroi M, Bonna A, Malcor JD, Howes JM, Warburton EA, et al. Platelet collagen receptor glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation. J Thromb Haemost. 2018;16(2):389–404. https://doi.org/10.1111/jth.13919 .
doi: 10.1111/jth.13919
pubmed: 29210180
pmcid: 5838801
Uitte de Willige S, Standeven KF, Philippou H, Ariëns RA. The pleiotropic role of the fibrinogen gamma’ chain in hemostasis. Blood. 2009;114(19):3994–4001. https://doi.org/10.1182/blood-2009-05-217968 .
doi: 10.1182/blood-2009-05-217968
pubmed: 19687509
Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci. 2001;936:11–30. https://doi.org/10.1111/j.1749-6632.2001.tb03491.x .
doi: 10.1111/j.1749-6632.2001.tb03491.x
pubmed: 11460466
Budzynski AZ, Olexa SA, Pandya BV. Fibrin polymerization sites in fibrinogen and fibrin fragments. Ann N Y Acad Sci. 1983;408:301–14. https://doi.org/10.1111/j.1749-6632.1983.tb23253.x .
doi: 10.1111/j.1749-6632.1983.tb23253.x
pubmed: 6575691
Okumura N, Terasawa F, Haneishi A, Fujihara N, Hirota-Kawadobora M, Yamauchi K, et al. B:b interactions are essential for polymerization of variant fibrinogens with impaired holes ‘a.’ J Thromb Haemost. 2007;5(12):2352–9. https://doi.org/10.1111/j.1538-7836.2007.02793.x .
doi: 10.1111/j.1538-7836.2007.02793.x
pubmed: 17922804
Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997;389(6650):455–62. https://doi.org/10.1038/38947 .
doi: 10.1038/38947
pubmed: 9333233
Surma S, Banach M. Fibrinogen and atherosclerotic cardiovascular diseases-review of the literature and clinical studies. Int J Mol Sci. 2021;23(1): 193. https://doi.org/10.3390/ijms23010193 .
doi: 10.3390/ijms23010193
pubmed: 35008616
pmcid: 8745133
de Vries JJ, Snoek CJM, Rijken DC, de Maat MPM. Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and Fibrinolysis: a systematic review. Arterioscler Thromb Vasc Biol. 2020;40(3):554–69. https://doi.org/10.1161/ATVBAHA.119.313626 .
doi: 10.1161/ATVBAHA.119.313626
pubmed: 31914791
pmcid: 7043730
Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and fibrin in Hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2017;37(3):e13-21. https://doi.org/10.1161/ATVBAHA.117.308564 .
doi: 10.1161/ATVBAHA.117.308564
pubmed: 28228446
pmcid: 5324399
Weisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem. 2017;82:405–56. https://doi.org/10.1007/978-3-319-49674-0_13 .
doi: 10.1007/978-3-319-49674-0_13
pubmed: 28101869
pmcid: 5536120
Risman RA, Belcher HA, Ramanujam RK, Weisel JW, Hudson NE, Tutwiler V. Comprehensive analysis of the role of fibrinogen and thrombin in clot formation and structure for plasma and purified fibrinogen. Biomolecules. 2024;14(2): 230. https://doi.org/10.3390/biom14020230 .
doi: 10.3390/biom14020230
pubmed: 38397467
pmcid: 10886591
Vilar R, Fish RJ, Casini A, Neerman-Arbez M. Fibrin(ogen) in human disease: both friend and foe. Haematologica. 2020;105(2):284–96. https://doi.org/10.3324/haematol.2019.236901 .
doi: 10.3324/haematol.2019.236901
pubmed: 31949010
pmcid: 7012490
Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–48. https://doi.org/10.1146/annurev-biochem-061516-045037 .
doi: 10.1146/annurev-biochem-061516-045037
pubmed: 28441057
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res. 2018;52(5):507–43. https://doi.org/10.1080/10715762.2018.1457217 .
doi: 10.1080/10715762.2018.1457217
pubmed: 29589770
Sovová Ž, Štikarová J, Kaufmanová J, Májek P, Suttnar J, Šácha P, et al. Impact of posttranslational modifications on atomistic structure of fibrinogen. PLoS ONE. 2020;15(1): e0227543. https://doi.org/10.1371/journal.pone.0227543 .
doi: 10.1371/journal.pone.0227543
pubmed: 31995579
pmcid: 6988951
Andrés CMC, de la Pérez JM, Juan CA, Plou FJ, Pérez-Lebeña E. The role of reactive species on innate immunity. Vaccines (Basel). 2022;10(10):1735. https://doi.org/10.3390/vaccines10101735 .
doi: 10.3390/vaccines10101735
pubmed: 36298601
pmcid: 9609844
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511–20. https://doi.org/10.1182/blood-2018-07-818211 .
doi: 10.1182/blood-2018-07-818211
pubmed: 30523120
pmcid: 6367649
Becatti M, Marcucci R, Bruschi G, Taddei N, Bani D, Gori AM, et al. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler Thromb Vasc Biol. 2014;34(7):1355–61. https://doi.org/10.1161/ATVBAHA.114.303785 .
doi: 10.1161/ATVBAHA.114.303785
pubmed: 24790138
Martinez M, Cuker A, Mills A, Lightfoot R, Fan Y, Tang WH, et al. Nitrated fibrinogen is a biomarker of oxidative stress in venous thromboembolism. Free Radic Biol Med. 2012;53(2):230–6. https://doi.org/10.1016/j.freeradbiomed.2012.05.004 .
doi: 10.1016/j.freeradbiomed.2012.05.004
pubmed: 22580301
pmcid: 3392413
Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T, et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem. 2004;279(10):8820–6. https://doi.org/10.1074/jbc.M306101200 .
doi: 10.1074/jbc.M306101200
pubmed: 14681238
Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J. 2007;401(1):1–11. https://doi.org/10.1042/BJ20061131 .
doi: 10.1042/BJ20061131
pubmed: 17150040
Pignatelli B, Li CQ, Boffetta P, Chen Q, Ahrens W, Nyberg F, et al. Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res. 2001;61(2):778–84.
pubmed: 11212282
Martinez M, Weisel JW, Ischiropoulos H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radic Biol Med. 2013;65:411–8. https://doi.org/10.1016/j.freeradbiomed.2013.06.039 .
doi: 10.1016/j.freeradbiomed.2013.06.039
pubmed: 23851017
Kwaan HC, Lindholm PF. Fibrin and fibrinolysis in ancer. Semin Thromb Hemost. 2019;45(4):413–22. https://doi.org/10.1055/s-0039-1688495 .
doi: 10.1055/s-0039-1688495
pubmed: 31041799
Moiseiwitsch N, Zwennes N, Szlam F, Sniecinski R, Brown A. COVID-19 patient fibrinogen produces dense clots with altered polymerization kinetics, partially explained by increased sialic acid. J Thromb Haemost. 2022;20(12):2909–20. https://doi.org/10.1111/jth.15882 .
doi: 10.1111/jth.15882
pubmed: 36111490
pmcid: 9537908
Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–9. https://doi.org/10.1111/jth.14975 .
doi: 10.1111/jth.14975
pubmed: 32558075
pmcid: 7323352
Kearney KJ, Ariëns RAS, Macrae FL. The role of fibrin(ogen) in Wound Healing and infection control. Semin Thromb Hemost. 2022;48(2):174–87. https://doi.org/10.1055/s-0041-1732467 .
doi: 10.1055/s-0041-1732467
pubmed: 34428799
Torbitz VD, Bochi GV, de Carvalho JA, de Almeida Vaucher R, da Silva JE, Moresco RN. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator. Inflammation. 2015;38(3):1201–6. https://doi.org/10.1007/s10753-014-0085-x .
doi: 10.1007/s10753-014-0085-x
pubmed: 25502444
Weigandt KM, White N, Chung D, Ellingson E, Wang Y, Fu X, et al. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys J. 2012;103(11):2399–407. https://doi.org/10.1016/j.bpj.2012.10.036 .
doi: 10.1016/j.bpj.2012.10.036
pubmed: 23283239
pmcid: 3514520
Burney PR, White N, Pfaendtner J. Structural effects of methionine oxidation on isolated subdomains of human fibrin D and αC regions. PLoS ONE. 2014;9(1): e86981. https://doi.org/10.1371/journal.pone.0086981 .
doi: 10.1371/journal.pone.0086981
pubmed: 24475207
pmcid: 3903590
Pederson EN, Interlandi G. Oxidation-induced destabilization of the fibrinogen αC-domain dimer investigated by molecular dynamics simulations. Proteins. 2019;87(10):826–36. https://doi.org/10.1002/prot.25746 .
doi: 10.1002/prot.25746
pubmed: 31134660
pmcid: 6718331
Yurina LV, Vasilyeva AD, Gavrilina ES, Ivanov VS, Obydennyi SI, Chabin IA, et al. A role of methionines in the functioning of oxidatively modified fibrinogen. Biochim Biophys Acta Proteins Proteom. 2024;1872(4):141013. https://doi.org/10.1016/j.bbapap.2024.141013 .
doi: 10.1016/j.bbapap.2024.141013
pubmed: 38582358
Sovova Z, Suttnar J, Dyr JE. Molecular dynamic simulations suggest that metabolite-induced post-translational modifications alter the behavior of the Fibrinogen coiled-Coil Domain. Metabolites. 2021;11(5): 307. https://doi.org/10.3390/metabo11050307 .
doi: 10.3390/metabo11050307
pubmed: 34065002
pmcid: 8150326
Yurina LV, Vasilyeva AD, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, et al. Hypochlorite-Induced oxidative modification of Fibrinogen. Dokl Biochem Biophys. 2019;484(1):37–41. https://doi.org/10.1134/S1607672919010101 .
doi: 10.1134/S1607672919010101
pubmed: 31012009
Bychkova AV, Vasilyeva AD, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, et al. Oxidation-induced modification of the fibrinogen polypeptide chains. Dokl Biochem Biophys. 2017;474(1):173–7. https://doi.org/10.1134/S1607672917030115 .
doi: 10.1134/S1607672917030115
pubmed: 28726089
Yurina L, Vasilyeva A, Indeykina M, Bugrova A, Biryukova M, Kononikhin A, et al. Ozone-induced damage of fibrinogen molecules: identification of oxidation sites by high-resolution mass spectrometry. Free Radic Res. 2019;53(4):430–55. https://doi.org/10.1080/10715762.2019.1600686 .
doi: 10.1080/10715762.2019.1600686
pubmed: 30935261
Roitman EV, Azizova OA, Morozov YA, Aseichev AV. Effect of oxidized fibrinogens on blood coagulation. Bull Exp Biol Med. 2004;138(3):245–7. https://doi.org/10.1007/s10517-005-0011-1 .
doi: 10.1007/s10517-005-0011-1
pubmed: 15665914
Nowak P, Zbikowska HM, Ponczek M, Kolodziejczyk J, Wachowicz B. Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: functional consequences. Thromb Res. 2007;121(2):163–74. https://doi.org/10.1016/j.thromres.2007.03.017 .
doi: 10.1016/j.thromres.2007.03.017
pubmed: 17467041
Andrades ME, Lorenzi R, Berger M, Guimarães JA, Moreira JC, Dal-Pizzol F. Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chem Biol Interact. 2009;180(3):478–84. https://doi.org/10.1016/j.cbi.2009.04.005 .
doi: 10.1016/j.cbi.2009.04.005
pubmed: 19397901
Azizova OA, Piryazev AP, Aseychev AV, Shvachko AG. Oxidative modification of fibrinogen inhibits its transformation into fibrin under the effect of thrombin. Bull Exp Biol Med. 2009;147(2):201–3. https://doi.org/10.1007/s10517-009-0474-6 .
doi: 10.1007/s10517-009-0474-6
pubmed: 19513421
Piryazev AP, Aseichev AV, Azizova OA. Effect of oxidation-modified fibrinogen on the formation and lysis of fibrin clot in the plasma. Bull Exp Biol Med. 2009;148(6):881–5. https://doi.org/10.1007/s10517-010-0841-3 .
doi: 10.1007/s10517-010-0841-3
pubmed: 21116496
Rosenfeld MA, Leonova VB, Konstantinova ML, Razumovskii SD. Self-assembly of fibrin monomers and fibrinogen aggregation during ozone oxidation. Biochem (Mosc). 2009;74(1):41–6. https://doi.org/10.1134/s0006297909010064 .
doi: 10.1134/s0006297909010064
Tetik S, Kaya K, Yardimci T. Effect of oxidized fibrinogen on hemostatic system: in vitro study. Clin Appl Thromb Hemost. 2011;17(3):259–63. https://doi.org/10.1177/1076029610363129 .
doi: 10.1177/1076029610363129
pubmed: 20530059
Štikarová J, Kotlín R, Riedel T, Suttnar J, Pimková K, Chrastinová L, et al. The effect of reagents mimicking oxidative stress on fibrinogen function. ScientificWorldJournal. 2013;2013: 359621. https://doi.org/10.1155/2013/359621 .
doi: 10.1155/2013/359621
pubmed: 24235886
pmcid: 3818977
Wang L, Li L, Wang H, Liu J. Study on the influence of oxidative stress on the fibrillization of fibrinogen. Biochem J. 2016;473(23):4373–84. https://doi.org/10.1042/BCJ20160702 .
doi: 10.1042/BCJ20160702
pubmed: 27702872
Wang L, Cui C, Li R, Xu S, Li H, Li L, et al. Study on the oxidation of fibrinogen using Fe. J Inorg Biochem. 2018;189:58–68. https://doi.org/10.1016/j.jinorgbio.2018.09.008 .
doi: 10.1016/j.jinorgbio.2018.09.008
pubmed: 30243119
Gligorijević N, Radomirović M, Rajković A, Nedić O, Ćirković Veličković T. Fibrinogen increases Resveratrol Solubility and prevents it from Oxidation. Foods. 2020;9(6). https://doi.org/10.3390/foods9060780 .
Rosenfeld MA, Wasserman LA, Vasilyeva AD, Podoplelova NA, Panteleev MA, Yurina LV. Hypochlorite-induced oxidation of fibrinogen: effects on its thermal denaturation and fibrin structure. Biochim Biophys Acta Gen Subj. 2021;1865(10): 129970. https://doi.org/10.1016/j.bbagen.2021.129970 .
doi: 10.1016/j.bbagen.2021.129970
pubmed: 34339807
Lau WH, White NJ, Yeo TW, Gruen RL, Pervushin K. Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods. Sci Rep. 2021;11(1):15691. https://doi.org/10.1038/s41598-021-94401-3 .
doi: 10.1038/s41598-021-94401-3
pubmed: 34344919
pmcid: 8333047
Yurina LV, Vasilyeva AD, Vasserman LA, Podoplelova NA, Panteleev MA, Rosenfeld MA. Effect of Hypochlorite- and Peroxide-Induced Oxidation of Fibrinogen on the Fibrin structure. Dokl Biochem Biophys. 2021;499(1):242–6. https://doi.org/10.1134/S1607672921040189 .
doi: 10.1134/S1607672921040189
pubmed: 34426920
Bettiol A, Argento FR, Fini E, Bello F, Di Scala G, Taddei N, et al. ROS-driven structural and functional fibrinogen modifications are reverted by interleukin-6 inhibition in giant cell arteritis. Thromb Res. 2023;230:1–10. https://doi.org/10.1016/j.thromres.2023.08.011 .
doi: 10.1016/j.thromres.2023.08.011
pubmed: 37598635
Undas A, Kolarz M, Kopeć G, Tracz W. Altered fibrin clot properties in patients on long-term haemodialysis: relation to cardiovascular mortality. Nephrol Dial Transpl. 2008;23(6):2010–5. https://doi.org/10.1093/ndt/gfm884 .
doi: 10.1093/ndt/gfm884
Paton LN, Mocatta TJ, Richards AM, Winterbourn CC. Increased thrombin-induced polymerization of fibrinogen associated with high protein carbonyl levels in plasma from patients post myocardial infarction. Free Radic Biol Med. 2010;48(2):223–9. https://doi.org/10.1016/j.freeradbiomed.2009.10.044 .
doi: 10.1016/j.freeradbiomed.2009.10.044
pubmed: 19857568
Kwasny-Krochin B, Gluszko P, Undas A. Unfavorably altered fibrin clot properties in patients with active rheumatoid arthritis. Thromb Res. 2010;126(1):e11-6. https://doi.org/10.1016/j.thromres.2010.04.007 .
doi: 10.1016/j.thromres.2010.04.007
pubmed: 20471669
Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squatrito D, et al. Neutrophil activation promotes fibrinogen oxidation and Thrombus formation in Behçet Disease. Circulation. 2016;133(3):302–11. https://doi.org/10.1161/CIRCULATIONAHA.115.017738 .
doi: 10.1161/CIRCULATIONAHA.115.017738
pubmed: 26585672
Hugenholtz GC, Macrae F, Adelmeijer J, Dulfer S, Porte RJ, Lisman T, et al. Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen. J Thromb Haemost. 2016;14(5):1054–66. https://doi.org/10.1111/jth.13278 .
doi: 10.1111/jth.13278
pubmed: 26833718
White NJ, Wang Y, Fu X, Cardenas JC, Martin EJ, Brophy DF, et al. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic Biol Med. 2016;96:181–9. https://doi.org/10.1016/j.freeradbiomed.2016.04.023 .
doi: 10.1016/j.freeradbiomed.2016.04.023
pubmed: 27105953
pmcid: 4912420
Becatti M, Emmi G, Bettiol A, Silvestri E, Di Scala G, Taddei N, et al. Behçet’s syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects. Clin Exp Immunol. 2019;195(3):322–33. https://doi.org/10.1111/cei.13243 .
doi: 10.1111/cei.13243
pubmed: 30472725
Bryk AH, Konieczynska M, Rostoff P, Broniatowska E, Hohendorff J, Malecki MT, et al. Plasma protein oxidation as a determinant of impaired fibrinolysis in type 2 diabetes. Thromb Haemost. 2019;119(2):213–22. https://doi.org/10.1055/s-0038-1676609 .
doi: 10.1055/s-0038-1676609
pubmed: 30605917
Misztal T, Golaszewska A, Tomasiak-Lozowska MM, Iwanicka M, Marcinczyk N, Leszczynska A, et al. The myeloperoxidase product, hypochlorous acid, reduces thrombus formation under flow and attenuates clot retraction and fibrinolysis in human blood. Free Radic Biol Med. 2019;141:426–37. https://doi.org/10.1016/j.freeradbiomed.2019.07.003 .
doi: 10.1016/j.freeradbiomed.2019.07.003
pubmed: 31279970
Becatti M, Mannucci A, Argento FR, Gitto S, Vizzutti F, Marra F, et al. Super-resolution Microscopy reveals an altered Fibrin Network in cirrhosis: the key role of oxidative stress in fibrinogen structural modifications. Antioxid (Basel). 2020;9(8):737. https://doi.org/10.3390/antiox9080737 .
doi: 10.3390/antiox9080737
Baralić M, Robajac D, Penezić A, Miljuš G, Šunderić M, Gligorijević N, et al. Fibrinogen modification and fibrin formation in patients with an end-stage renal disease subjected to peritoneal Dialysis. Biochem (Mosc). 2020;85(8):947–54. https://doi.org/10.1134/S0006297920080106 .
doi: 10.1134/S0006297920080106
Ceznerová E, Kaufmanová J, Stikarová J, Pastva O, Loužil J, Chrastinová L, et al. Thrombosis-associated hypofibrinogenemia: novel abnormal fibrinogen variant FGG c.8G > A with oxidative posttranslational modifications. Blood Coagul Fibrinolysis. 2022;33(4):228–37. https://doi.org/10.1097/MBC.0000000000001125 .
doi: 10.1097/MBC.0000000000001125
pubmed: 35067535
Błaż M, Natorska J, Bembenek JP, Członkowska A, Ząbczyk M, Polak M, et al. Protein carbonylation contributes to prothrombotic fibrin clot phenotype in Acute Ischemic Stroke: Clinical associations. Stroke. 2023;54(11):2804–13. https://doi.org/10.1161/STROKEAHA.123.043628 .
doi: 10.1161/STROKEAHA.123.043628
pubmed: 37795592
Nowak K, Zabczyk M, Natorska J, Zalewski J, Undas A. Elevated plasma protein carbonylation increases the risk of ischemic cerebrovascular events in patients with atrial fibrillation: association with a prothrombotic state. J Thromb Thrombolysis. 2024. https://doi.org/10.1007/s11239-024-03003-z .
doi: 10.1007/s11239-024-03003-z
pubmed: 38965130
Słaboszewski M, Kolec R, Paszek E, Baran M, Undas A. Prothrombotic plasma fibrin clot phenotype is associated with spontaneous echo contrast in atrial fibrillation: the role of protein carbonylation. Thromb Res. 2024;240: 109065. https://doi.org/10.1016/j.thromres.2024.109065 .
doi: 10.1016/j.thromres.2024.109065
pubmed: 38908317
Gitto S, Fiorillo C, Argento FR, Fini E, Borghi S, Falcini M, et al. Oxidative stress–induced fibrinogen modifications in liver transplant recipients: unraveling a novel potential mechanism for cardiovascular risk. Res Pract Thromb Haemost. 2024;8: e102555. https://doi.org/10.1016/j.rpth.2024.102555 .
doi: 10.1016/j.rpth.2024.102555
Marchi R, Arocha-Piñango CL, Nagy H, Matsuda M, Weisel JW. The effects of additional carbohydrate in the coiled-coil region of fibrinogen on polymerization and clot structure and properties: characterization of the homozygous and heterozygous forms of fibrinogen Lima (Aalpha Arg141–>Ser with extra glycosylation). J Thromb Haemost. 2004;2(6):940–8. https://doi.org/10.1111/j.1538-7836.2004.00730.x .
doi: 10.1111/j.1538-7836.2004.00730.x
pubmed: 15140130
Maghzal GJ, Brennan SO, George PM. The sialic acid content of fibrinogen decreases during pregnancy and increases in response to fibrate therapy. Thromb Res. 2005;115(4):293–9. https://doi.org/10.1016/j.thromres.2004.08.013 .
doi: 10.1016/j.thromres.2004.08.013
pubmed: 15668189
Dunn EJ, Philippou H, Ariëns RA, Grant PJ. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia. 2006;49(5):1071–80. https://doi.org/10.1007/s00125-006-0197-4 .
doi: 10.1007/s00125-006-0197-4
pubmed: 16538489
Adamczyk B, Struwe WB, Ercan A, Nigrovic PA, Rudd PM. Characterization of fibrinogen glycosylation and its importance for serum/plasma N-glycome analysis. J Proteome Res. 2013;12(1):444–54. https://doi.org/10.1021/pr300813h .
doi: 10.1021/pr300813h
pubmed: 23151259
Gligorijević N, Zámorová Križáková M, Penezić A, Katrlík J, Nedić O. Structural and functional changes of fibrinogen due to aging. Int J Biol Macromol. 2018;108:1028–34. https://doi.org/10.1016/j.ijbiomac.2017.11.016 .
doi: 10.1016/j.ijbiomac.2017.11.016
pubmed: 29137999
Gligorijević N, Minić S, Križáková M, Katrlík J, Nedić O. Structural changes of fibrinogen as a consequence of cirrhosis. Thromb Res. 2018;166:43–9. https://doi.org/10.1016/j.thromres.2018.04.005 .
doi: 10.1016/j.thromres.2018.04.005
pubmed: 29655002
Nellenbach K, Kyu A, Guzzetta N, Brown AC. Differential sialic acid content in adult and neonatal fibrinogen mediates differences in clot polymerization dynamics. Blood Adv. 2021;5(23):5202–14. https://doi.org/10.1182/bloodadvances.2021004417 .
doi: 10.1182/bloodadvances.2021004417
pubmed: 34555851
pmcid: 9153052
Mirmiranpour H, Bathaie SZ, Khaghani S, Nakhjavani M, Kebriaeezadeh A. Investigation of the mechanism(s) involved in decreasing increased fibrinogen activity in hyperglycemic conditions using L-lysine supplementation. Thromb Res. 2012;130(3):e13-19. https://doi.org/10.1016/j.thromres.2012.04.010 .
doi: 10.1016/j.thromres.2012.04.010
pubmed: 22575419
Norton DG, Fan NK, Goudie MJ, Handa H, Platt MO, Averett RD. Computational imaging analysis of glycated fibrin gels reveals aggregated and anisotropic structures. J Biomed Mater Res A. 2017;105(8):2191–8. https://doi.org/10.1002/jbm.a.36074 .
doi: 10.1002/jbm.a.36074
pubmed: 28371216
Hood JE, Yesudasan S, Averett RD. Glucose concentration affects fibrin clot structure and morphology as evidenced by Fluorescence Imaging and molecular simulations. Clin Appl Thromb Hemost. 2018;24(9suppl):S104-116. https://doi.org/10.1177/1076029618792304 .
doi: 10.1177/1076029618792304
Rehman S, Faisal M, Alatar AA, Ahmad S. Physico-chemical Changes Induced in the Serum Proteins Immunoglobulin G and fibrinogen mediated by Methylglyoxal. Curr Protein Pept Sci. 2020;21(9):916–23. https://doi.org/10.2174/1389203720666190618095719 .
doi: 10.2174/1389203720666190618095719
pubmed: 31244422
Perween S, Abidi M, Faizy AF, Moinuddin. Post-translational modifications on glycated plasma fibrinogen: a physicochemical insight. Int J Biol Macromol. 2019;126:1201–12. https://doi.org/10.1016/j.ijbiomac.2019.01.018 .
doi: 10.1016/j.ijbiomac.2019.01.018
pubmed: 30625358
Luzak B, Boncler M, Kosmalski M, Mnich E, Stanczyk L, Przygodzki T, et al. Fibrinogen Glycation and Presence of glucose impair fibrin Polymerization-An in Vitro Study of isolated fibrinogen and plasma from patients with diabetes Mellitus. Biomolecules. 2020;10(6): 877. https://doi.org/10.3390/biom10060877 .
doi: 10.3390/biom10060877
pubmed: 32517350
pmcid: 7356284
Alouffi S, Shahab U, Khan S, Khan M, Khanam A, Akasha R, et al. Glyoxal induced glycative insult suffered by immunoglobulin G and fibrinogen proteins: a comparative physicochemical characterization to reveal structural perturbations. Int J Biol Macromol. 2022;205:283–96. https://doi.org/10.1016/j.ijbiomac.2022.02.093 .
doi: 10.1016/j.ijbiomac.2022.02.093
pubmed: 35192903
Perween S, Abidi M, Faiz Faizy A, Moinuddin. Biophysical changes in methylglyoxal modified fibrinogen and its role in the immunopathology of type 2 diabetes mellitus. Int J Biol Macromol. 2022;202:199–214. https://doi.org/10.1016/j.ijbiomac.2021.12.161 .
doi: 10.1016/j.ijbiomac.2021.12.161
pubmed: 34999047
Ahmad R, Warsi MS, Abidi M, Habib S, Siddiqui S, Khan H, et al. Structural perturbations induced by cumulative action of methylglyoxal and peroxynitrite on human fibrinogen: an in vitro and in silico approach. Spectrochim Acta Mol Biomol Spectrosc. 2024;307: 123500. https://doi.org/10.1016/j.saa.2023.123500 .
doi: 10.1016/j.saa.2023.123500
Jörneskog G, Hansson LO, Wallen NH, Yngen M, Blombäck M. Increased plasma fibrin gel porosity in patients with type I diabetes during continuous subcutaneous insulin infusion. J Thromb Haemost. 2003;1(6):1195–201. https://doi.org/10.1046/j.1538-7836.2003.00301.x .
doi: 10.1046/j.1538-7836.2003.00301.x
pubmed: 12871319
Dunn EJ, Ariëns RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia. 2005;48(6):1198–206. https://doi.org/10.1007/s00125-005-1742-2 .
doi: 10.1007/s00125-005-1742-2
pubmed: 15864538
Pieters M, Covic N, Loots dT, van der Westhuizen FH, van Zyl DG, Rheeder P, et al. The effect of glycaemic control on fibrin network structure of type 2 diabetic subjects. Thromb Haemost. 2006;96(5):623–9.
pubmed: 17080220
Pieters M, Covic N, van der Westhuizen FH, Nagaswami C, Baras Y, Toit Loots D, et al. Glycaemic control improves fibrin network characteristics in type 2 diabetes - a purified fibrinogen model. Thromb Haemost. 2008;99(4):691–700. https://doi.org/10.1160/TH07-11-0699 .
doi: 10.1160/TH07-11-0699
pubmed: 18392327
pmcid: 2854507
Li W, Sigley J, Pieters M, Helms CC, Nagaswami C, Weisel JW, et al. Fibrin Fiber stiffness is strongly affected by Fiber diameter, but not by Fibrinogen Glycation. Biophys J. 2016;110(6):1400–10. https://doi.org/10.1016/j.bpj.2016.02.021 .
doi: 10.1016/j.bpj.2016.02.021
pubmed: 27028649
pmcid: 4816776
Schuett K, Savvaidis A, Maxeiner S, Lysaja K, Jankowski V, Schirmer SH, et al. Clot structure: a potent mortality risk factor in patients on Hemodialysis. J Am Soc Nephrol. 2017;28(5):1622–30. https://doi.org/10.1681/ASN.2016030336 .
doi: 10.1681/ASN.2016030336
pubmed: 28057772
pmcid: 5407718
Rehman S, Alouffi S, Faisal M, Qahtan AA, Alatar AA, Ahmad S. Methylglyoxal mediated glycation leads to neo-epitopes generation in fibrinogen: role in the induction of adaptive immune response. Int J Biol Macromol. 2021;175:535–43. https://doi.org/10.1016/j.ijbiomac.2021.01.197 .
doi: 10.1016/j.ijbiomac.2021.01.197
pubmed: 33529635
Gole MD, Souza JM, Choi I, Hertkorn C, Malcolm S, Foust RF, et al. Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L961-7. https://doi.org/10.1152/ajplung.2000.278.5.L961 .
doi: 10.1152/ajplung.2000.278.5.L961
pubmed: 10781426
Ponczek MB, Nowak P, Wachowicz B. The effects of nitronium ion on nitration, carbonylation and coagulation of human fibrinogen. Gen Physiol Biophys. 2008;27(1):55–8.
pubmed: 18436984
Bijak M, Nowak P, Borowiecka M, Ponczek MB, Żbikowska HM, Wachowicz B. Protective effects of (-)-epicatechin against nitrative modifications of fibrinogen. Thromb Res. 2012;130(3):e123-8. https://doi.org/10.1016/j.thromres.2012.03.017 .
doi: 10.1016/j.thromres.2012.03.017
pubmed: 22503653
Bijak M, Saluk J, Antosik A, Ponczek MB, Żbikowska HM, Borowiecka M, et al. Aronia melanocarpa as a protector against nitration of fibrinogen. Int J Biol Macromol. 2013;55:264–8. https://doi.org/10.1016/j.ijbiomac.2013.01.019 .
doi: 10.1016/j.ijbiomac.2013.01.019
pubmed: 23357800
Ding Y, Luo Y, Fu J. Effects of Mn (II) on peroxynitrite nitrifying fibrinogen. Biomed Mater Eng. 2014;24(1):901–7. https://doi.org/10.3233/BME-130884 .
doi: 10.3233/BME-130884
pubmed: 24211978
Helms CC, Kapadia S, Gilmore AC, Lu Z, Basu S, Kim-Shapiro DB. Exposure of fibrinogen and thrombin to nitric oxide donor ProliNONOate affects fibrin clot properties. Blood Coagul Fibrinolysis. 2017;28(5):356–64. https://doi.org/10.1097/MBC.0000000000000602 .
doi: 10.1097/MBC.0000000000000602
pubmed: 27755019
pmcid: 5419873
Marchelak A, Kolodziejczyk-Czepas J, Wasielewska P, Nowak P, Olszewska MA. The Effects of Prunus spinosa L. Flower Extracts, Model Polyphenols and Phenolic Metabolites on Oxidative/Nitrative Modifications of Human Plasma Components with Particular Emphasis on Fibrinogen In Vitro. Antioxid (Basel). 2021;10(4):581. https://doi.org/10.3390/antiox10040581 .
doi: 10.3390/antiox10040581
Rutkowska M, Kolodziejczyk-Czepas J, Olszewska MA. The effects of. Antioxid (Basel). 2021;10(12). https://doi.org/10.3390/antiox10122009 .
Farhana A, Alsrhani A, Khan YS, Salahuddin M, Sayeed MU, Rasheed Z. Apigenin provides Structural Protection to Human fibrinogen against nitrosative stress: biochemical and molecular insights. Biomolecules. 2024;14(5): 576. https://doi.org/10.3390/biom14050576 .
doi: 10.3390/biom14050576
pubmed: 38785983
pmcid: 11117476
Parastatidis I, Thomson L, Fries DM, Moore RE, Tohyama J, Fu X, et al. Increased protein nitration burden in the atherosclerotic lesions and plasma of apolipoprotein A-I deficient mice. Circ Res. 2007;101(4):368–76. https://doi.org/10.1161/CIRCRESAHA.107.157537 .
doi: 10.1161/CIRCRESAHA.107.157537
pubmed: 17615369
Parastatidis I, Thomson L, Burke A, Chernysh I, Nagaswami C, Visser J, et al. Fibrinogen beta-chain tyrosine nitration is a prothrombotic risk factor. J Biol Chem. 2008;283(49):33846–53. https://doi.org/10.1074/jbc.M805522200 .
doi: 10.1074/jbc.M805522200
pubmed: 18818200
pmcid: 2590685
Heffron SP, Parastatidis I, Cuchel M, Wolfe ML, Tadesse MG, Mohler ER, et al. Inflammation induces fibrinogen nitration in experimental human endotoxemia. Free Radic Biol Med. 2009;47(8):1140–6. https://doi.org/10.1016/j.freeradbiomed.2009.07.025 .
doi: 10.1016/j.freeradbiomed.2009.07.025
pubmed: 19631267
pmcid: 3651370
Nowak W, Treliński J, Chojnowski K, Matczak J, Robak M, Misiewicz M, et al. Assessment of oxidative/nitrative modifications of plasma proteins, selected ROTEM parameters and kinetics of fibrinogen polymerization in patients with multiple myeloma at diagnosis. Med Oncol. 2017;34(1):4. https://doi.org/10.1007/s12032-016-0856-3 .
doi: 10.1007/s12032-016-0856-3
pubmed: 27900590
Nakayama-Hamada M, Suzuki A, Furukawa H, Yamada R, Yamamoto K. Citrullinated fibrinogen inhibits thrombin-catalysed fibrin polymerization. J Biochem. 2008;144(3):393–8. https://doi.org/10.1093/jb/mvn079 .
doi: 10.1093/jb/mvn079
pubmed: 18583356
Okumura N, Haneishi A, Terasawa F. Citrullinated fibrinogen shows defects in FPA and FPB release and fibrin polymerization catalyzed by thrombin. Clin Chim Acta. 2009;401(1–2):119–23. https://doi.org/10.1016/j.cca.2008.12.002 .
doi: 10.1016/j.cca.2008.12.002
pubmed: 19109936
Damiana T, Damgaard D, Sidelmann JJ, Nielsen CH, de Maat MPM, Münster AB, et al. Citrullination of fibrinogen by peptidylarginine deiminase 2 impairs fibrin clot structure. Clin Chim Acta. 2020;501:6–11. https://doi.org/10.1016/j.cca.2019.10.033 .
doi: 10.1016/j.cca.2019.10.033
pubmed: 31730822
Varjú I, Sorvillo N, Cherpokova D, Farkas Á, Farkas VJ, Komorowicz E, et al. Citrullinated Fibrinogen renders Clots mechanically less stable, but Lysis-Resistant. Circ Res. 2021;129(2):342–4. https://doi.org/10.1161/CIRCRESAHA.121.319061 .
doi: 10.1161/CIRCRESAHA.121.319061
pubmed: 34037437
pmcid: 8260470
Varjú I, Tóth E, Farkas Á, Farkas VJ, Komorowicz E, Feller T, et al. Citrullinated fibrinogen forms densely packed clots with decreased permeability. J Thromb Haemost. 2022;20(12):2862–72. https://doi.org/10.1111/jth.15875 .
doi: 10.1111/jth.15875
pubmed: 36083779
pmcid: 9828116
Pretorius E, Oberholzer HM, van der Spuy WJ, Swanepoel AC, Soma P. Scanning electron microscopy of fibrin networks in rheumatoid arthritis: a qualitative analysis. Rheumatol Int. 2012;32(6):1611–5. https://doi.org/10.1007/s00296-011-1805-2 .
doi: 10.1007/s00296-011-1805-2
pubmed: 21331577
Vranic A, Pruner I, Veselinovic M, Soutari N, Petkovic A, Jakovljevic V, et al. Assessment of hemostatic disturbances in women with established rheumatoid arthritis. Clin Rheumatol. 2019;38(11):3005–14. https://doi.org/10.1007/s10067-019-04629-8 .
doi: 10.1007/s10067-019-04629-8
pubmed: 31209709
Bezuidenhout JA, Venter C, Roberts TJ, Tarr G, Kell DB, Pretorius E. Detection of Citrullinated Fibrin in plasma clots of rheumatoid arthritis patients and its relation to altered structural clot Properties, Disease-related inflammation and prothrombotic tendency. Front Immunol. 2020;11: 577523. https://doi.org/10.3389/fimmu.2020.577523 .
doi: 10.3389/fimmu.2020.577523
pubmed: 33424834
pmcid: 7793985
Antovic A, Perneby C, Ekman GJ, Wallen HN, Hjemdahl P, Blombäck M, et al. Marked increase of fibrin gel permeability with very low dose ASA treatment. Thromb Res. 2005;116(6):509–17. https://doi.org/10.1016/j.thromres.2005.02.007 .
doi: 10.1016/j.thromres.2005.02.007
pubmed: 16181986
He S, Bark N, Wang H, Svensson J, Blombäck M. Effects of acetylsalicylic acid on increase of fibrin network porosity and the consequent upregulation of fibrinolysis. J Cardiovasc Pharmacol. 2009;53(1):24–9. https://doi.org/10.1097/FJC.0b013e3181953e0f .
doi: 10.1097/FJC.0b013e3181953e0f
pubmed: 19129740
Ajjan RA, Standeven KF, Khanbhai M, Phoenix F, Gersh KC, Weisel JW, et al. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler Thromb Vasc Biol. 2009;29(5):712–7. https://doi.org/10.1161/ATVBAHA.109.183707 .
doi: 10.1161/ATVBAHA.109.183707
pubmed: 19286636
Tehrani S, Antovic A, Mobarrez F, Mageed K, Lins PE, Adamson U, et al. High-dose aspirin is required to influence plasma fibrin network structure in patients with type 1 diabetes. Diabetes Care. 2012;35(2):404–8. https://doi.org/10.2337/dc11-1302 .
doi: 10.2337/dc11-1302
pubmed: 22148098
pmcid: 3263903
Lauricella AM, Quintana I, Castañon M, Sassetti B, Kordich L. Influence of homocysteine on fibrin network lysis. Blood Coagul Fibrinolysis. 2006;17(3):181–6. https://doi.org/10.1097/01.mbc.0000220238.99843.45 .
doi: 10.1097/01.mbc.0000220238.99843.45
pubmed: 16575255
Sauls DL, Lockhart E, Warren ME, Lenkowski A, Wilhelm SE, Hoffman M. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry. 2006;45(8):2480–7. https://doi.org/10.1021/bi052076j .
doi: 10.1021/bi052076j
pubmed: 16489740
Marchi R, Carvajal Z, Weisel JW. Comparison of the effect of different homocysteine concentrations on clot formation using human plasma and purified fibrinogen. Thromb Haemost. 2008;99(2):451–2. https://doi.org/10.1160/TH07-06-0404 .
doi: 10.1160/TH07-06-0404
pubmed: 18278201
pmcid: 2854490
Sauls DL, Warren M, Hoffman M. Homocysteinylated fibrinogen forms disulfide-linked complexes with albumin. Thromb Res. 2011;127(6):576–81. https://doi.org/10.1016/j.thromres.2011.01.009 .
doi: 10.1016/j.thromres.2011.01.009
pubmed: 21316742
Malinowska J, Olas B. Analysis of biological properties of selected elements of haemostasis after treatment with the oxidized form of homocysteine in vitro. Platelets. 2011;22(8):629–32. https://doi.org/10.3109/09537104.2011.579204 .
doi: 10.3109/09537104.2011.579204
pubmed: 21627409
Genoud V, Lauricella AM, Kordich LC, Quintana I. Impact of homocysteine-thiolactone on plasma fibrin networks. J Thromb Thrombolysis. 2014;38(4):540–5. https://doi.org/10.1007/s11239-014-1063-8 .
doi: 10.1007/s11239-014-1063-8
pubmed: 24659173
Ma Y, Tonelli M, Unsworth LD. Effect of carbamylation on protein structure and adsorption to self-assembled monolayer surfaces. Colloids Surf B Biointerfaces. 2021;203: 111719. https://doi.org/10.1016/j.colsurfb.2021.111719 .
doi: 10.1016/j.colsurfb.2021.111719
pubmed: 33831751
Binder V, Bergum B, Jaisson S, Gillery P, Scavenius C, Spriet E, et al. Impact of fibrinogen carbamylation on fibrin clot formation and stability. Thromb Haemost. 2017;117(5):899–910. https://doi.org/10.1160/TH16-09-0704 .
doi: 10.1160/TH16-09-0704
pubmed: 28382370
pmcid: 5442607
Heldin P, Humble E. Phosphorylation of human fibrinogen in vitro with protein kinase C: characterization of the phosphorylated sites. Arch Biochem Biophys. 1987;252(1):49–59. https://doi.org/10.1016/0003-9861(87)90007-5 .
doi: 10.1016/0003-9861(87)90007-5
pubmed: 3101598
Forsberg PO. Dephosphorylation of human fibrinogen, previously phosphorylated in vitro by protein kinase C, by whole blood or intestinal alkaline phosphatase. Effects on thrombin-induced gelation of in vitro dephosphorylated human fibrinogen. Thromb Res. 1989;53(1):1–9. https://doi.org/10.1016/0049-3848(89)90110-2 .
doi: 10.1016/0049-3848(89)90110-2
pubmed: 2922698
Forsberg PO, Martin SC. Plasmin digestion of human fibrinogen previously phosphorylated by protein kinase C or dephosphorylated by alkaline phosphatase in vitro. Thromb Res. 1990;58(2):119–27. https://doi.org/10.1016/0049-3848(90)90169-d .
doi: 10.1016/0049-3848(90)90169-d
pubmed: 2140913
Martin SC, Björk I. Conformational changes in human fibrinogen after in vitro phosphorylation and their relation to fibrinogen behaviour. FEBS Lett. 1990;272(1–2):103–5. https://doi.org/10.1016/0014-5793(90)80458-u .
doi: 10.1016/0014-5793(90)80458-u
pubmed: 2226821
Martin SC, Forsberg PO, Eriksson SD. The effects of in vitro phosphorylation and dephosphorylation on the thrombin-induced gelation and plasmin degradation of fibrinogen. Thromb Res. 1991;61(3):243–52. https://doi.org/10.1016/0049-3848(91)90100-b .
doi: 10.1016/0049-3848(91)90100-b
pubmed: 1827546
Suk K, Lee JY, Kim SH. Synergistic stimulation of fibrinogen gelation by casein kinase II and polycationic compounds. Biochem Mol Biol Int. 1997;42(3):487–95. https://doi.org/10.1080/15216549700202891 .
doi: 10.1080/15216549700202891
pubmed: 9247706
Martin SC, Ekman P, Forsberg PO, Ersmark H. Increased phosphate content of fibrinogen in vivo correlates with alteration in fibrinogen behaviour. Thromb Res. 1992;68(6):467–73. https://doi.org/10.1016/0049-3848(92)90059-j .
doi: 10.1016/0049-3848(92)90059-j
pubmed: 1341057
Reganon E, Vila V, Aznar J, Lacueva V, Martinez V, Ruano M. Studies on the functionality of newly synthesized fibrinogen after treatment of acute myocardial infarction with Streptokinase, increase in the rate of fibrinopeptide release. Thromb Haemost. 1993;70(6):978–83.
doi: 10.1055/s-0038-1649710
pubmed: 8165621
Rosenfeld MA, Shchegolikhin AN, Bychkova AV, Leonova VB, Biryukova MI, Kostanova EA. Ozone-induced oxidative modification of fibrinogen: role of the D regions. Free Radic Biol Med. 2014;77:106–20. https://doi.org/10.1016/j.freeradbiomed.2014.08.018 .
doi: 10.1016/j.freeradbiomed.2014.08.018
pubmed: 25224034
Colombo G, Clerici M, Giustarini D, Portinaro N, Badalamenti S, Rossi R, et al. A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation. Biochim Biophys Acta. 2015;1850(1):1–12. https://doi.org/10.1016/j.bbagen.2014.09.024 .
doi: 10.1016/j.bbagen.2014.09.024
pubmed: 25280629
Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev. 2014;33(2):79–97. https://doi.org/10.1002/mas.21381 .
doi: 10.1002/mas.21381
pubmed: 23832618
Rosenfeld MA, Bychkova AV, Shchegolikhin AN, Leonova VB, Kostanova EA, Biryukova MI, et al. Fibrin self-assembly is adapted to oxidation. Free Radic Biol Med. 2016;95:55–64. https://doi.org/10.1016/j.freeradbiomed.2016.03.005 .
doi: 10.1016/j.freeradbiomed.2016.03.005
pubmed: 26969792
Tetik S, Kaya K, Demir M, Eksioglu-Demiralp E, Yardimci T. Oxidative modification of fibrinogen affects its binding activity to glycoprotein (GP) IIb/IIIa. Clin Appl Thromb Hemost. 2010;16(1):51–9. https://doi.org/10.1177/1076029609339749 .
doi: 10.1177/1076029609339749
pubmed: 19903699
Medved’ L, Ugarova T, Veklich Y, Lukinova N, Weisel J. Electron microscope investigation of the early stages of fibrin assembly. Twisted protofibrils and fibers. J Mol Biol. 1990;216(3):503–9. https://doi.org/10.1016/0022-2836(90)90376-W .
doi: 10.1016/0022-2836(90)90376-W
pubmed: 2258925
Medeiros R, Sousa B, Rossi S, Afonso C, Bonino L, Pitt A, et al. Identification and relative quantification of 3-nitrotyrosine residues in fibrinogen nitrated in vitro and fibrinogen from ischemic stroke patient plasma using LC-MS/MS. Free Radic Biol Med. 2021;165:334–47. https://doi.org/10.1016/j.freeradbiomed.2021.01.049 .
doi: 10.1016/j.freeradbiomed.2021.01.049
pubmed: 33548450
Bruckdorfer KR. Acad Sci III. 2001;324(7):611–5. https://doi.org/10.1016/s0764-4469(01)01336-1 .
doi: 10.1016/s0764-4469(01)01336-1
Hoffman M. Alterations of fibrinogen structure in human disease. Cardiovasc Hematol Agents Med Chem. 2008;6(3):206–11. https://doi.org/10.2174/187152508784871981 .
doi: 10.2174/187152508784871981
pubmed: 18673234
Undas A. Fibrin clot properties and their modulation in thrombotic disorders. Thromb Haemost. 2014;112(1):32–42. https://doi.org/10.1160/TH14-01-0032 .
doi: 10.1160/TH14-01-0032
pubmed: 24671700
Kaufmanova J, Stikarova J, Hlavackova A, Chrastinova L, Maly M, Suttnar J, et al. Fibrin clot formation under oxidative stress conditions. Antioxid (Basel). 2021;10(6):923. https://doi.org/10.3390/antiox10060923 .
doi: 10.3390/antiox10060923
Watala C, Pluta J, Golanski J, Rozalski M, Czyz M, Trojanowski Z, et al. Increased protein glycation in diabetes mellitus is associated with decreased aspirin-mediated protein acetylation and reduced sensitivity of blood platelets to aspirin. J Mol Med (Berl). 2005;83(2):148–58. https://doi.org/10.1007/s00109-004-0600-x .
doi: 10.1007/s00109-004-0600-x
pubmed: 15723265
Heldin P, Hessel B, Humble E, Blombäck B, Engström L. Effect of phosphorylation in vitro of human fibrinogen with protein kinase C on thrombin-induced gelation. Thromb Res. 1987;47(1):93–9. https://doi.org/10.1016/0049-3848(87)90244-1 .
doi: 10.1016/0049-3848(87)90244-1
pubmed: 3660346
Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013;121(10):1712–9. https://doi.org/10.1182/blood-2012-09-306639 .
doi: 10.1182/blood-2012-09-306639
pubmed: 23305734
pmcid: 3591795
Lord ST. Molecular mechanisms affecting fibrin structure and stability. Arterioscler Thromb Vasc Biol. 2011;31(3):494–9. https://doi.org/10.1161/ATVBAHA.110.213389 .
doi: 10.1161/ATVBAHA.110.213389
pubmed: 21325671
pmcid: 3070401
Sjøland JA, Sidelmann JJ, Brabrand M, Pedersen RS, Pedersen JH, Esbensen K, et al. Fibrin clot structure in patients with end-stage renal disease. Thromb Haemost. 2007;98(2):339–45.
pubmed: 17721616
Salonen EM, Vartio T, Hedman K, Vaheri A. Binding of fibronectin by the acute phase reactant C-reactive protein. J Biol Chem. 1984;259(3):1496–501.
doi: 10.1016/S0021-9258(17)43435-1
pubmed: 6693419
Gralnick HR, Givelber H, Abrams E. Dysfibrinogenemia associated with hepatoma. Increased carbohydrate content of the fibrinogen molecule. N Engl J Med. 1978;299(5):221–6. https://doi.org/10.1056/NEJM197808032990503 .
doi: 10.1056/NEJM197808032990503
pubmed: 207986
Martinez J, Palascak JE, Kwasniak D. Abnormal sialic acid content of the dysfibrinogenemia associated with liver disease. J Clin Invest. 1978;61(2):535–8. https://doi.org/10.1172/JCI108964 .
doi: 10.1172/JCI108964
pubmed: 621288
pmcid: 372564
Martinez J, MacDonald KA, Palascak JE. The role of sialic acid in the dysfibrinogenemia associated with liver disease: distribution of sialic acid on the constituent chains. Blood. 1983;61(6):1196–202.
doi: 10.1182/blood.V61.6.1196.1196
pubmed: 6839020
CASPARY EA. Studies on the acetylation of human fibrinogen. Biochem J. 1956;62(3):507–12. https://doi.org/10.1042/bj0620507 .
doi: 10.1042/bj0620507
pubmed: 13304007
pmcid: 1215947
Phillips HM, York JL. Bovine fibrinogen. II. Effects of tyrosine modification on fibrin monomer aggregation. Biochemistry. 1973;12(19):3642–7. https://doi.org/10.1021/bi00743a012 .
doi: 10.1021/bi00743a012
pubmed: 4799175
Wegrzynowicz Z, Kloczewiak M, Kopec M. Bovine fibrinogen modified with 3H-acetic anhydride (3H-AcOAc). J Lab Clin Med. 1975;86(2):360–8.
pubmed: 239078
Bjornsson TD, Schneider DE, Berger H. Aspirin acetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. J Pharmacol Exp Ther. 1989;250(1):154–61.
pubmed: 2746495
He S, Blombäck M, Yoo G, Sinha R, Henschen-Edman AH. Modified clotting properties of fibrinogen in the presence of acetylsalicylic acid in a purified system. Ann N Y Acad Sci. 2001;936:531–5. https://doi.org/10.1111/j.1749-6632.2001.tb03540.x .
doi: 10.1111/j.1749-6632.2001.tb03540.x
pubmed: 11460511
Engström L, Edlund B, Ragnarsson U, Dahlqvist-Edberg U, Humble E. Phosphorylation of human fibrinogen in vitro with cyclic 3’,5’-AMP-stimulated protein kinase and (32P)ATP. Biochem Biophys Res Commun. 1980;96(4):1503–7. https://doi.org/10.1016/0006-291x(80)91344-3 .
doi: 10.1016/0006-291x(80)91344-3
pubmed: 6255944
Papanikolaou P, Humble E, Engström L. Phosphorylation of human fibrinogen in vitro with calcium-activated phospholipid-dependent protein kinase and [32P]ATP. FEBS Lett. 1982;143(2):199–204. https://doi.org/10.1016/0014-5793(82)80098-7 .
doi: 10.1016/0014-5793(82)80098-7
pubmed: 6288458
Guasch MD, Plana M, Pena JM, Itarte E. Phosphorylation of fibrinogen by casein kinase 2. Biochem J. 1986;234(3):523–6. https://doi.org/10.1042/bj2340523 .
doi: 10.1042/bj2340523
pubmed: 3013157
pmcid: 1146602
Itarte E, Plana M, Guasch MD, Martos C. Phosphorylation of fibrinogen by casein kinase 1. Biochem Biophys Res Commun. 1983;117(2):631–6. https://doi.org/10.1016/0006-291x(83)91247-0 .
doi: 10.1016/0006-291x(83)91247-0
pubmed: 6318767
Heldin P. Phosphorylation in vitro of human fibrinogen with casein kinase TS and characterization of phosphorylated sites. Arch Biochem Biophys. 1987;257(2):269–75. https://doi.org/10.1016/0003-9861(87)90566-2 .
doi: 10.1016/0003-9861(87)90566-2
pubmed: 3477999
Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol. 2017;13(9):580–93. https://doi.org/10.1038/nrneph.2017.103 .
doi: 10.1038/nrneph.2017.103
pubmed: 28757635
Gorisse L, Jaisson S, Piétrement C, Gillery P. Carbamylated Proteins in Renal Disease: aggravating factors or just biomarkers? Int J Mol Sci. 2022;23(1): 574. https://doi.org/10.3390/ijms23010574 .
doi: 10.3390/ijms23010574
pubmed: 35008998
pmcid: 8745352
Mastella AK, de Carvalho JAM, Pereira KN, das Neves YS, Stein CS, Bochi GV, et al. Potential effects of carbamylation on the prothrombin time, activated partial thromboplastin time, and fibrinogen. Int J Lab Hematol. 2024;46(1):173–5. https://doi.org/10.1111/ijlh.14176 .
doi: 10.1111/ijlh.14176
pubmed: 37718238
Meh DA, Siebenlist KR, Brennan SO, Holyst T, Mosesson MW. The amino acid sequence in fibrin responsible for high affinity thrombin binding. Thromb Haemost. 2001;85(3):470–4.
doi: 10.1055/s-0037-1615607
pubmed: 11307817
Lovely RS, Moaddel M, Farrell DH. Fibrinogen gamma’ chain binds thrombin exosite II. J Thromb Haemost. 2003;1(1):124–31. https://doi.org/10.1046/j.1538-7836.2003.00027.x .
doi: 10.1046/j.1538-7836.2003.00027.x
pubmed: 12871549
Youssef MM, Szot CW, Folz J, Collier LM, Kweon HK, DeFiglia SA, et al. Electron capture vs transfer dissociation for site determination of tryptic peptide tyrosine sulfation: direct detection of Fibrinogen Sulfation sites and Identification of Novel Isobaric interferences. J Proteome Res. 2024;23(7):2386–96. https://doi.org/10.1021/acs.jproteome.4c00072 .
doi: 10.1021/acs.jproteome.4c00072
pubmed: 38900499
Ripoll-Rozada J, Maxwell JWC, Payne RJ, Barbosa Pereira PJ. Tyrosine-O-sulfation is a widespread affinity enhancer among thrombin interactors. Biochem Soc Trans. 2022;50(1):387–401. https://doi.org/10.1042/BST20210600 .
doi: 10.1042/BST20210600
pubmed: 34994377
Kwaan HC. From fibrinolysis to the plasminogen-plasmin system and beyond: a remarkable growth of knowledge, with personal observations on the history of fibrinolysis. Semin Thromb Hemost. 2014;40(5):585–91. https://doi.org/10.1055/s-0034-1383545 .
doi: 10.1055/s-0034-1383545
pubmed: 25000957
Miniati M, Fiorillo C, Becatti M, Monti S, Bottai M, Marini C, et al. Fibrin resistance to lysis in patients with pulmonary hypertension other than thromboembolic. Am J Respir Crit Care Med. 2010;181(9):992–6. https://doi.org/10.1164/rccm.200907-1135OC .
doi: 10.1164/rccm.200907-1135OC
pubmed: 20075386
Morris TA, Marsh JJ, Chiles PG, Kim NH, Noskovack KJ, Magana MM, et al. Abnormally sialylated fibrinogen gamma-chains in a patient with chronic thromboembolic pulmonary hypertension. Thromb Res. 2007;119(2):257–9. https://doi.org/10.1016/j.thromres.2006.02.010 .
doi: 10.1016/j.thromres.2006.02.010
pubmed: 16626789