Combined use of 5-ALA-induced protoporphyrin IX and chlorin e6 for fluorescence diagnostics and photodynamic therapy of skin tumors.
5-aminolevulinic acid
Chlorin e6
Fluorescence diagnostics
Photodynamic therapy
Phototheranostics
Protoporphyrin IX
Skin tumors
Journal
Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
13
08
2024
accepted:
24
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Different types of photosensitizers (PSs) have different dynamics and intensities of accumulation, depending on the type of tumor or different areas within the same tumor. This determines the effectiveness of fluorescence diagnostics and photodynamic therapy (PDT). This paper studies the processes of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) and chlorin e6 (Ce6) accumulation in the central and border zones of a tumor after combined administration of two PSs into the patient's body. Fluorescence diagnostic methods have shown that sublingual administration of 5-ALA leads to the more intense accumulation of PpIX in a tumor compared to oral administration. Differences have been identified in the dynamics of 5-ALA-induced PpIX and Ce6 accumulation in the central and border zones of the tumor, as well as normal tissues. Ce6 accumulates mainly in the central zone of the tumor while PpIX accumulates in the border zone of the tumor. All patients with combined PDT experienced complete therapeutic pathomorphosis and relapse-free observation.
Identifiants
pubmed: 39477891
doi: 10.1007/s10103-024-04219-4
pii: 10.1007/s10103-024-04219-4
doi:
Substances chimiques
Protoporphyrins
0
protoporphyrin IX
C2K325S808
phytochlorin
5S2CCF3T1Z
Aminolevulinic Acid
88755TAZ87
Chlorophyllides
0
Photosensitizing Agents
0
Porphyrins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
266Subventions
Organisme : Ministry of Education and Science of the Russian Federation
ID : 075-15-2022-315
Organisme : Ministry of Education and Science of the Russian Federation
ID : 075-15-2022-315
Organisme : Ministry of Education and Science of the Russian Federation
ID : 075-15-2022-315
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
Références
Collier NJ, Lesley ER (2020) Photodynamic therapy for basal cell carcinoma: the clinical context for future research priorities. Molecules 25(22):5398. https://doi.org/10.3390/molecules25225398
doi: 10.3390/molecules25225398
pubmed: 33218174
pmcid: 7698957
Ibarra AM, Ccopa et al (2022) Photodynamic therapy for squamous cell carcinoma of the head and neck: narrative review focusing on photosensitizers. Lasers Med Sci 1–30. https://doi.org/10.1007/s10103-021-03462-3
Mazur E, Reich A (2023) Photodynamic therapy is an effective treatment of facial pigmented actinic keratosis. Dermatol Ther 13(6):1265–1276. https://doi.org/10.1007/s13555-023-00924-0
doi: 10.1007/s13555-023-00924-0
de Oliveira Analú, Barros et al (2022) Photodynamic therapy for treating infected skin wounds: A systematic review and meta-analysis from randomized clinical trials. Photodiagn Photodyn Ther 40:103118. https://doi.org/10.1016/j.pdpdt.2022.103118
doi: 10.1016/j.pdpdt.2022.103118
Moy LS, Frost D, Moy S (2020) Photodynamic therapy for photodamage, actinic keratosis, and acne in the cosmetic practice. Facial Plast Surg Clin 28(1):135–148. https://doi.org/10.1016/j.fsc.2019.09.012
doi: 10.1016/j.fsc.2019.09.012
Maharjan P, Singh (2022) Single oxygen, photodynamic therapy, and mechanisms of cancer cell death. J Oncol 2022. https://doi.org/10.1155/2022/7211485
Suzuki T et al (2020) Vascular shutdown by photodynamic therapy using talaporfin sodium. Cancers 12(9):2369. https://doi.org/10.3390/cancers12092369
doi: 10.3390/cancers12092369
pubmed: 32825648
pmcid: 7563359
Castano AP, Mroz P, Hamblin MR (– 2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 535–545–T.6.–7. https://doi.org/10.1038/nrc1894
Casas A (2020) Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. Cancer Lett 490:165–173. https://doi.org/10.1016/j.canlet.2020.06.008
doi: 10.1016/j.canlet.2020.06.008
pubmed: 32534172
Kim TE, Ji-Eun C (2023) Recent studies in photodynamic therapy for cancer treatment: From basic research to clinical trials. Pharmaceutics 15(9):2257. https://doi.org/10.3390/pharmaceutics15092257
doi: 10.3390/pharmaceutics15092257
pubmed: 37765226
pmcid: 10535460
Gotardo F et al (2017) Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX by means of pulse train fluorescence technique. Chem Phys Lett 674:48–57. https://doi.org/10.1016/j.cplett.2017.02.055
doi: 10.1016/j.cplett.2017.02.055
Harada Y et al (2022) 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges. Int J Mol Sci 23(12):6478. https://doi.org/10.3390/ijms23126478
doi: 10.3390/ijms23126478
pubmed: 35742921
pmcid: 9223645
Malik Z (2020) Fundamentals of 5-aminolevulinic acid photodynamic therapy and diagnosis: An overview. Transl Biophotonics 2(1–2):e201900022. https://doi.org/10.1002/tbio.201900022
doi: 10.1002/tbio.201900022
Alekseeva PM et al (2021) Sublingual administration of 5-aminolevulinic acid for laser-induced photodiagnostics and photodynamic therapy of oral cavity and larynx cancers. Photodiagn Photodyn Ther 34:102289. https://doi.org/10.1016/j.pdpdt.2021.102289
doi: 10.1016/j.pdpdt.2021.102289
Stéphane Desgranges et al (2022) Amphiphilic Protoporphyrin IX Derivatives as New Photosensitizing Agents for the Improvement of Photodynamic Therapy. Biomedicines 10(2):423. https://doi.org/10.3390/biomedicines10020423
doi: 10.3390/biomedicines10020423
Orlova A et al (2021) Diffuse optical spectroscopy monitoring of experimental tumor oxygenation after red and blue light photodynamic therapy. Photonics 9(1)MDPI, https://doi.org/10.3390/photonics9010019
Yano S et al (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C 12(1):46–67. https://doi.org/10.1016/j.jphotochemrev.2011.06.001
doi: 10.1016/j.jphotochemrev.2011.06.001
Fontana Letícia, Corrêa et al (2022) Comparison of the photodynamic effect of two chlorins, photodithazine and fotoenticine, in gliosarcoma cells. Photochem 2(1):165–180. https://doi.org/10.3390/photochem2010013
doi: 10.3390/photochem2010013
Grandi V et al (2022) Cellular mechanisms in acute and chronic wounds after PDT therapy: An update. Biomedicines 10(7):1624. https://doi.org/10.3390/biomedicines10071624
doi: 10.3390/biomedicines10071624
pubmed: 35884929
pmcid: 9313247
Tempfer H et al (2015) Presence of lymphatics in a rat tendon lesion model. Histochem Cell Biol 143:411–419. https://doi.org/10.1007/s00418-014-1287-x
doi: 10.1007/s00418-014-1287-x
pubmed: 25371325
Efendiev K et al (2024) Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer. Photodiag Photodyn Ther 103969. https://doi.org/10.1016/j.pdpdt.2024.103969
Jayme V, Ramos et al (2021) Infiltrative tumor borders in colorectal liver metastasis: should we enlarge margin size? Ann Surg Oncol 1–11. https://doi.org/10.1245/s10434-021-09916-w
Sheleg SV et al (2004) Photodynamic therapy with chlorin e6 for skin metastases of melanoma. Photodermatol Photoimmunol Photomed 20(1):21–26. https://doi.org/10.1111/j.1600-0781.2004.00078.x
doi: 10.1111/j.1600-0781.2004.00078.x
pubmed: 14738529
Gilyadova A et al (2022) Phototheranostics of cervical neoplasms with chlorin e6 photosensitizer. Cancers 14(1):211. https://doi.org/10.3390/cancers14010211
doi: 10.3390/cancers14010211
pubmed: 35008375
pmcid: 8750251
Hak A et al (2023) Chlorin e6: A promising photosensitizer in photo-based cancer nanomedicine. ACS Appl Bio Mater 6(2):349–364. https://doi.org/10.1021/acsabm.2c00891
doi: 10.1021/acsabm.2c00891
pubmed: 36700563
Gilyadova AV et al (2024) Comparative study of treatment efficacy in severe intraepithelial squamous cell lesions and preinvasive cervical cancer by conization and chlorin e6-mediated fluorescence-assisted systemic photodynamic therapy. Photodiagn Photodyn Ther 104060. https://doi.org/10.1016/j.pdpdt.2024.104060
Dąbrowski JM, Arnaut LG (2015) Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci Т. 14. – №. 10. – С. 1765–1780. https://doi.org/10.1039/C5PP00132C
Gomer CJ et al (2006) Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg Med : Official J Am Soc Laser Med Surg 38(5):516–521. https://doi.org/10.1002/lsm.20339
doi: 10.1002/lsm.20339
Loshchenov M et al (2020) Laser-induced fluorescence diagnosis of stomach tumor. Lasers Med Sci 35:1721–1728. https://doi.org/10.1007/s10103-020-02963-x
doi: 10.1007/s10103-020-02963-x
pubmed: 31953738
Yuehui SU et al (2022) Effect and rational application of topical photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) for treatment of cervical intraepithelial neoplasia with vaginal intraepithelial neoplasia. Photodiagn Photodyn Ther 37:102634. https://doi.org/10.1016/j.pdpdt.2021.102634
doi: 10.1016/j.pdpdt.2021.102634
Kuno T et al (2022) 5-Aminolevulinic acid has the potential to prevent bladder dysfunction in cyclophosphamide‐induced hemorrhagic cystitis. Int J Urol 29(8):897–904. https://doi.org/10.1111/iju.14928
doi: 10.1111/iju.14928
pubmed: 35582850
Maragkos GA et al (2021) Fluorescence-guided high-grade glioma surgery more than four hours after 5-aminolevulinic acid administration. Front Neurol 12:644804. https://doi.org/10.3389/fneur.2021.644804
doi: 10.3389/fneur.2021.644804
pubmed: 33767664
Efendiev KT et al (2022) Preliminary low-dose photodynamic exposure to skin cancer with chlorin e6 photosensitizer. Photodiagn Photodyn Ther 38:102894. https://doi.org/10.1016/j.pdpdt.2022.102894
doi: 10.1016/j.pdpdt.2022.102894
Scorzo AV (2025) Comparing spatial distributions of ALA-PpIX and indocyanine green in a whole pig brain glioma model using 3D fluorescence cryotomography. J Biomed Opt 30(S1):S13704–S13704. https://doi.org/10.1117/1.JBO.30.S1.S13704
doi: 10.1117/1.JBO.30.S1.S13704
pubmed: 39247519
Cho SS et al (2020) Evaluation of diagnostic accuracy following the coadministration of delta-aminolevulinic acid and second window indocyanine green in rodent and human glioblastomas. Mol imaging biology 22:1266–1279. https://doi.org/10.1007/s11307-020-01504-w
doi: 10.1007/s11307-020-01504-w
Sardar HS et al (2020) Dual-agent fluorescent labeling of soft‐tissue sarcomas improves the contrast based upon targeting both interstitial and cellular components of the tumor milieu. J Surg Oncol 122(8):1711–1720. https://doi.org/10.1002/jso.26190
doi: 10.1002/jso.26190
pubmed: 32885452
Yagi R et al (2017) Intraoperative 5-aminolevulinic acid-induced photodynamic diagnosis of metastatic brain tumors with histopathological analysis. World J Surg Oncol 15:1–9. https://doi.org/10.1186/s12957-017-1239-8
doi: 10.1186/s12957-017-1239-8
Henke E (2020) Rajender Nandigama, and Süleyman Ergün. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 6:160. https://doi.org/10.3389/fmolb.2019.00160
doi: 10.3389/fmolb.2019.00160
pubmed: 32118030
Orenstein A et al (1996) A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Br J Cancer 73:937–944. https://doi.org/10.1038/bjc.1996.185
doi: 10.1038/bjc.1996.185
pubmed: 8611429
Dong J et al (2014) Hemodynamic monitoring of Chlorin e6-mediated photodynamic therapy using diffuse optical measurements. J Photochem Photobiol B 140:163–172. https://doi.org/10.1016/j.jphotobiol.2014.07.020
doi: 10.1016/j.jphotobiol.2014.07.020
pubmed: 25146878
Kobayashi T et al (2022) Therapeutic Options for Recurrent Glioblastoma Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy. Pharmaceutics 14(2)353. https://doi.org/10.3390/pharmaceutics14020353
doi: 10.3390/pharmaceutics14020353
pubmed: 35214085
pmcid: 8879869
Akimoto J et al (2019) Intraoperative photodiagnosis for malignant glioma using photosensitizer talaporfin sodium. Front Surg 6:12. https://doi.org/10.3389/fsurg.2019.00012
doi: 10.3389/fsurg.2019.00012
pubmed: 30949484
pmcid: 6438081
Kozlikina EI et al (2022) A Pilot Study of Fluorescence-Guided Resection of Pituitary Adenomas with Chlorin e6 Photosensitizer. Bioengineering 9(2):52. https://doi.org/10.3390/bioengineering9020052
doi: 10.3390/bioengineering9020052
pubmed: 35200407
pmcid: 8869665
Akimoto J et al (2023) First Clinical Report of the Intraoperative Macro-and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma. J Clin Med 12(2):432. https://doi.org/10.3390/jcm12020432
doi: 10.3390/jcm12020432
pubmed: 36675360
pmcid: 9867022
Ali-Seyed M et al (2011) Photolon™-photosensitization induces apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes. Int J Oncol 39(4):821–831. https://doi.org/10.3892/ijo.2011.1109
doi: 10.3892/ijo.2011.1109
pubmed: 21725591
Lai H, Wei T, Nakayama, Shun-ichiro Ogura (2021) Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis. Int J Clin Oncol 26:26–33. https://doi.org/10.1007/s10147-020-01766-y
doi: 10.1007/s10147-020-01766-y
pubmed: 32875514
Gautheron A et al (2024) 5-ALA induced PpIX fluorescence spectroscopy in neurosurgery: a review. Front NeuroSci 18:1310282. https://doi.org/10.3389/fnins.2024.1310282
doi: 10.3389/fnins.2024.1310282
pubmed: 38348134
pmcid: 10859467
Shi L et al (2020) Application of 5-aminolevulinic acid‐photodynamic therapy in common skin diseases. Transl Biophotonics 2(1–2):e201900028. https://doi.org/10.1002/tbio.201900028
doi: 10.1002/tbio.201900028
Farberg AS, Justin W, Marson, Soleymani T (2023) Advances in photodynamic therapy for the treatment of actinic keratosis and nonmelanoma skin cancer: a narrative review. Dermatol Ther 13(3):689–716. https://doi.org/10.1007/s13555-023-00888-1
doi: 10.1007/s13555-023-00888-1
Li D et al (2020) Treatment of HPV infection-associated low grade cervical intraepithelial neoplasia with 5-aminolevulinic acid-mediated photodynamic therapy. Photodiagn Photodyn Ther 32:101974. https://doi.org/10.1016/j.pdpdt.2020.101974
doi: 10.1016/j.pdpdt.2020.101974
Rahman KM, Mahabubur et al (2023) Photodynamic therapy for bladder cancers, a focused review. Photochem Photobiol 99(2):420–436. https://doi.org/10.1111/php.13726
doi: 10.1111/php.13726
pubmed: 36138552
Kaneko S et al (2021) Fluorescence real-time kinetics of protoporphyrin IX after 5-ALA administration in low-grade glioma. J Neurosurg 136(1):9–15. https://doi.org/10.3171/2020.10.JNS202881
doi: 10.3171/2020.10.JNS202881
pubmed: 34144512
Golub AL et al (1999) The monitoring of ALA-induced protoporphyrin IX accumulation and clearance in patients with skin lesions by in vivo surface-detected fluorescence spectroscopy. Lasers Med Sci 14:112–122. https://doi.org/10.1007/s101030050032
doi: 10.1007/s101030050032
pubmed: 24519166
Loh CS et al (1993) Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br J Cancer 68(1):41–51. https://doi.org/10.1038/bjc.1993.284
doi: 10.1038/bjc.1993.284
pubmed: 8318419
pmcid: 1968297
Piffaretti D et al (2019) Protoporphyrin IX tracer fluorescence modulation for improved brain tumor cell lines visualization. J Photochem Photobiol B 201:111640. https://doi.org/10.1016/j.jphotobiol.2019.111640
doi: 10.1016/j.jphotobiol.2019.111640
pubmed: 31734545
Fontana AO et al (2017) Epithelial growth factor receptor expression influences 5-ALA induced glioblastoma fluorescence. J Neurooncol 133:497–507. https://doi.org/10.1007/s11060-017-2474-0
doi: 10.1007/s11060-017-2474-0
pubmed: 28500562
pmcid: 5537329
Widhalm G et al (2013) 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PloS one 8(10):e76988
doi: 10.1371/journal.pone.0076988
pubmed: 24204718
pmcid: 3800004
Henderson BW et al (1995) Photosensitization of murine tumor, vasculature and skin by 5-aminolevulinic acid‐induced porphyrin. Photochem Photobiol 62:4780–4789. https://doi.org/10.1111/j.1751-1097.1995.tb08730.x
doi: 10.1111/j.1751-1097.1995.tb08730.x
Efendiev K et al (2023) Near-infrared phototheranostics of tumors with protoporphyrin IX and chlorin e6 photosensitizers. Photodiagn Photodyn Ther 42:103566. https://doi.org/10.1016/j.pdpdt.2023.103566
doi: 10.1016/j.pdpdt.2023.103566
Morton CA et al (2000) Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy. Br J Dermatol 143(4):767–772. https://doi.org/10.1046/j.1365-2133.2000.03773.x
doi: 10.1046/j.1365-2133.2000.03773.x
pubmed: 11069454
Svensson J et al (2005) Tissue temperature monitoring during interstitial photodynamic therapy. Thermal Treatment of Tissue: Energy Delivery and Assessment III, vol 5698. SPIE. https://doi.org/10.1117/12.588485
Mušković M, Pokrajac R, Malatesti N (2023) Combination of two photosensitisers in anticancer, antimicrobial and upconversion photodynamic therapy. Pharmaceuticals 16(4):613. https://doi.org/10.3390/ph16040613
doi: 10.3390/ph16040613
pubmed: 37111370
pmcid: 10143496
Kozlikina EI et al (2022) The Combined Use of 5-ALA and Chlorin e6 Photosensitizers for Fluorescence-Guided Resection and Photodynamic Therapy under Neurophysiological Control for Recurrent Glioblastoma in the Functional Motor Area after Ineffective Use of 5-ALA: Preliminary Results. Bioengineering 9(3):104. https://doi.org/10.3390/bioengineering9030104
doi: 10.3390/bioengineering9030104
pubmed: 35324793
pmcid: 8945443
Lallas A et al (2015) Dermoscopy in the diagnosis and management of basal cell carcinoma. Future Oncol 11:222975–2984. https://doi.org/10.5826/dpc.0403a02
doi: 10.5826/dpc.0403a02
Telfer NR, Colver GB, Morton CA (2008) Guidelines for the management of basal cell carcinoma. Br J Dermatol 159(1):35–48. https://doi.org/10.1111/j.1365-2133.2008.08666.x
doi: 10.1111/j.1365-2133.2008.08666.x
pubmed: 18593385
Pierik AS, Leemans CR, Brakenhoff RH (2021) Resection margins in head and neck cancer surgery: an update of residual disease and field cancerization. Cancers 13(11):2635. https://doi.org/10.3390/cancers13112635
doi: 10.3390/cancers13112635
pubmed: 34071997
pmcid: 8198309