Tumor-targeted glutathione oxidation catalysis with ruthenium nanoreactors against hypoxic osteosarcoma.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 28 09 2023
accepted: 16 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The majority of anticancer agents have a reduced or even complete loss of a therapeutic effect within hypoxic tumors. To overcome this limitation, research efforts have been devoted to the development of therapeutic agents with biological mechanisms of action that are independent of the oxygen concentration. Here we show the design, synthesis, and biological evaluation of the incorporation of a ruthenium (Ru) catalyst into polymeric nanoreactors for hypoxic anticancer therapy. The nanoreactors can catalyze the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) in hypoxic cancer cells. This initiates the buildup of reactive oxygen species (ROS) and lipid peroxides, leading to the demise of cancer cells. It also stimulates the overexpression of the transient receptor potential melastatin 2 (TRPM2) ion channels, triggering macrophage activation, leading to a systemic immune response. Upon intravenous injection, the nanoreactors can systemically activate the immune system, and nearly fully eradicate an aggressive osteosarcoma tumor inside a mouse model.

Identifiants

pubmed: 39477929
doi: 10.1038/s41467-024-53646-y
pii: 10.1038/s41467-024-53646-y
doi:

Substances chimiques

Glutathione GAN16C9B8O
Ruthenium 7UI0TKC3U5
Reactive Oxygen Species 0
Antineoplastic Agents 0
TRPM Cation Channels 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9405

Subventions

Organisme : Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
ID : JQ24055
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22175189; 52373127

Informations de copyright

© 2024. The Author(s).

Références

Bristow, R. G. & Hill, R. P. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 8, 180–192 (2008).
pubmed: 18273037 doi: 10.1038/nrc2344
Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).
pubmed: 11902584 doi: 10.1038/nrc704
Kuang, S. et al. Photodecaging of a Mitochondria-localized iridium(III) endoperoxide complex for two-photon photoactivated therapy under hypoxia. J. Am. Chem. Soc. 144, 4091–4101 (2022).
pubmed: 35171598 doi: 10.1021/jacs.1c13137
Cole, H. D. et al. Anticancer agent with inexplicable potency in extreme hypoxia: characterizing a light-triggered ruthenium ubertoxin. J. Am. Chem. Soc. 144, 9543–9547 (2022).
pubmed: 34882381 doi: 10.1021/jacs.1c09010
Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).
pubmed: 24287781 doi: 10.1038/nrd4002
James, C. C., de Bruin, B. & Reek, J. N. H. Transition metal catalysis in living cells: progress, challenges, and novel supramolecular solutions. Angew. Chem. Int. Ed., e202306645, https://doi.org/10.1002/anie.202306645 (2023).
Fan, Z., Huang, J., Huang, H. & Banerjee, S. Metal-based catalytic drug development for next-generation cancer therapy. ChemMedChem 16, 2480–2486 (2021).
pubmed: 34028190 doi: 10.1002/cmdc.202100297
Karges, J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew. Chem. Int. Ed. 61, e202112236 (2022).
doi: 10.1002/anie.202112236
Sasmal, P. K., Streu, C. N. & Meggers, E. Metal complex catalysis in living biological systems. Chem. Commun. 49, 1581–1587 (2013).
doi: 10.1039/C2CC37832A
Lee, L. C.-C. & Lo, K. K.-W. Luminescent and photofunctional transition metal complexes: from molecular design to diagnostic and therapeutic applications. J. Am. Chem. Soc. 144, 14420–14440 (2022).
pubmed: 35925792 doi: 10.1021/jacs.2c03437
Lo, K. K.-W. Luminescent Rhenium(I) and iridium(III) polypyridine complexes as biological probes, imaging reagents, and photocytotoxic agents. Acc. Chem. Res. 48, 2985–2995 (2015).
pubmed: 26161527 doi: 10.1021/acs.accounts.5b00211
Dougan, S. J., Habtemariam, A., McHale, S. E., Parsons, S. & Sadler, P. J. Catalytic organometallic anticancer complexes. Proc. Natl. Acad. Sci. 105, 11628–11633 (2008).
pubmed: 18687892 pmcid: 2503924 doi: 10.1073/pnas.0800076105
Huang, H. et al. Targeted photoredox catalysis in cancer cells. Nat. Chem. 11, 1041–1048 (2019).
pubmed: 31548671 doi: 10.1038/s41557-019-0328-4
Sasmal, P. K. et al. Catalytic azide reduction in biological environments. ChemBioChem 13, 1116–1120 (2012).
pubmed: 22514188 doi: 10.1002/cbic.201100719
Bose, S., Ngo, A. H. & Do, L. H. Intracellular transfer hydrogenation mediated by unprotected organoiridium catalysts. J. Am. Chem. Soc. 139, 8792–8795 (2017).
pubmed: 28613857 doi: 10.1021/jacs.7b03872
Soldevila-Barreda, J. J., Habtemariam, A., Romero-Canelón, I. & Sadler, P. J. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD+ and pyruvate, and antiproliferative activity. J. Inorg. Biochem. 153, 322–333 (2015).
pubmed: 26601938 doi: 10.1016/j.jinorgbio.2015.10.008
Soldevila-Barreda, J. J., Romero-Canelón, I., Habtemariam, A. & Sadler, P. J. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat. Commun. 6, 6582 (2015).
pubmed: 25791197 doi: 10.1038/ncomms7582
Coverdale, J. P. C. et al. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat. Chem. 10, 347–354 (2018).
pubmed: 29461524 doi: 10.1038/nchem.2918
Vidal, C., Tomás-Gamasa, M., Gutiérrez-González, A. & Mascareñas, J. L. Ruthenium-catalyzed redox isomerizations inside living cells. J. Am. Chem. Soc. 141, 5125–5129 (2019).
pubmed: 30892889 pmcid: 6497367 doi: 10.1021/jacs.9b00837
Streu, C. & Meggers, E. Ruthenium-induced allylcarbamate cleavage in living cells. Angew. Chem. Int. Ed. 45, 5645–5648 (2006).
doi: 10.1002/anie.200601752
Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).
pubmed: 26100809 pmcid: 5697749 doi: 10.1038/nchem.2284
Learte-Aymamí, S., Vidal, C., Gutiérrez-González, A. & Mascareñas, J. L. Intracellular reactions promoted by bis(histidine) miniproteins stapled using palladium(II) complexes. Angew. Chem. Int. Ed. 59, 9149–9154 (2020).
doi: 10.1002/anie.202002032
Wang, X. et al. Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications. J. Am. Chem. Soc. 141, 17133–17141 (2019).
pubmed: 31580665 doi: 10.1021/jacs.9b05833
Long, Y. et al. Bioorthogonal activation of dual catalytic and anti-cancer activities of organogold(I) complexes in living systems. Angew. Chem. Int. Ed. 60, 4133–4141 (2021).
doi: 10.1002/anie.202013366
Eda, S. et al. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat. Catal. 2, 780–792 (2019).
doi: 10.1038/s41929-019-0317-4
Destito, P., Couceiro, J. R., Faustino, H., López, F. & Mascareñas, J. L. Ruthenium-catalyzed azide–thioalkyne cycloadditions in aqueous media: a mild, orthogonal, and biocompatible chemical ligation. Angew. Chem. Int. Ed. 56, 10766–10770 (2017).
doi: 10.1002/anie.201705006
Miguel-Ávila, J., Tomás-Gamasa, M., Olmos, A., Pérez, P. J. & Mascareñas, J. L. Discrete Cu(i) complexes for azide–alkyne annulations of small molecules inside mammalian cells. Chem. Sci. 9, 1947–1952 (2018).
pubmed: 29675241 pmcid: 5892125 doi: 10.1039/C7SC04643J
Yusop, R. M., Unciti-Broceta, A., Johansson, E. M. V., Sánchez-Martín, R. M. & Bradley, M. Palladium-mediated intracellular chemistry. Nat. Chem. 3, 239–243 (2011).
pubmed: 21336331 doi: 10.1038/nchem.981
Huo, M., Wang, L., Chen, Y. & Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017).
pubmed: 28842577 pmcid: 5572465 doi: 10.1038/s41467-017-00424-8
Betanzos-Lara, S. et al. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity. J. Biol. Inorg. Chem. 17, 1033–1051 (2012).
pubmed: 22791215 doi: 10.1007/s00775-012-0917-9
Bhattacharyya, S., Purkait, K. & Mukherjee, A. Ruthenium(ii) p-cymene complexes of a benzimidazole-based ligand capable of VEGFR2 inhibition: hydrolysis, reactivity and cytotoxicity studies. Dalton Trans. 46, 8539–8554 (2017).
pubmed: 28638907 doi: 10.1039/C7DT00938K
Kumar Santra, B. & Kumar Lahiri, G. Cobalt-mediated direct and selective aromatic thiolation in the complex [CoIII(o-SC6H4NC 5H4N)2]ClO4. Synthesis, spectroscopic characterisation and electron-transfer properties. J. Chem. Soc. Dalton Trans., 1883–1888, https://doi.org/10.1039/A700018I (1997).
Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022).
pubmed: 35941223 pmcid: 9358926 doi: 10.1038/s41568-022-00496-9
Karges, J. Encapsulation of Ru(II) polypyridine complexes for tumor-targeted anticancer therapy. BME Front. 4, 0024 (2023).
pubmed: 37849670 pmcid: 10392611 doi: 10.34133/bmef.0024
Kosower, E. M. & Kosower, N. S. Lest I forget thee, glutathione. Nature 224, 117–120 (1969).
pubmed: 5343512 doi: 10.1038/224117a0
Kosower, E. M. & Miyadera, T. Glutathione. 6. Probable mechanism of action of diazene antibiotics. J. Med. Chem. 15, 307–312 (1972).
pubmed: 5059216 doi: 10.1021/jm00273a023
Hansen, J. C. The iodide-catalyzed decomposition of hydrogen peroxide: a simple computer-interfaced kinetics experiment for general chemistry. J. Chem. Educ. 73, 728 (1996).
doi: 10.1021/ed073p728
Horstman, M. G., Meadows, G. G. & Yost, G. S. Separate mechanisms for procarbazine spermatotoxicity and anticancer activity1. Cancer Res. 47, 1547–1550 (1987).
pubmed: 3815355
Reed, D. J. in Antineoplastic and Immunosuppressive Agents: Part II (eds Alan C. Sartorelli & David G. Johns) 747–765 (Springer Berlin Heidelberg, 1975).
Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).
pubmed: 25620030 doi: 10.1016/j.ccell.2014.11.019
Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell. Biol. 22, 266–282 (2021).
pubmed: 33495651 pmcid: 8142022 doi: 10.1038/s41580-020-00324-8
Knowles, H. et al. Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc. Natl. Acad. Sci. 108, 11578–11583 (2011).
pubmed: 21709234 pmcid: 3136283 doi: 10.1073/pnas.1010678108
Kashio, M. et al. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc. Natl. Acad. Sci. 109, 6745–6750 (2012).
pubmed: 22493272 pmcid: 3340098 doi: 10.1073/pnas.1114193109
Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).
pubmed: 27748397 doi: 10.1038/nri.2016.107
Garcia-Amorós, J., Massad, W. A., Nonell, S. & Velasco, D. Fast isomerizing methyl iodide azopyridinium salts for molecular switches. Org. Lett. 12, 3514–3517 (2010).
pubmed: 20670015 doi: 10.1021/ol1013679
Liu, Y. et al. A Supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution. J. Am. Chem. Soc. 135, 4765–4770 (2013).
pubmed: 23464832 doi: 10.1021/ja3122608
Chatterjee, S., Kundu, S., Bhattacharyya, A., Hartinger, C. G. & Dyson, P. J. The ruthenium(II)–arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53–JNK pathways. J. Biol. Inorg. Chem. 13, 1149–1155 (2008).
pubmed: 18597125 doi: 10.1007/s00775-008-0400-9
Cao, L. et al. Activating cGAS-STING pathway with ROS-responsive nanoparticles delivering a hybrid prodrug for enhanced chemo-immunotherapy. Biomaterials 290, 121856 (2022).
pubmed: 36306685 doi: 10.1016/j.biomaterials.2022.121856

Auteurs

Hanchen Zhang (H)

Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Nicolás Montesdeoca (N)

Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany.

Dongsheng Tang (D)

Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Ganghao Liang (G)

Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Minhui Cui (M)

Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Chun Xu (C)

School of Dentistry, The University of Queensland, Brisbane, QLD, Australia.

Lisa-Marie Servos (LM)

Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany.

Tiejun Bing (T)

Immunology and Oncology center, ICE Bioscience, Beijing, China.

Zisis Papadopoulos (Z)

Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany.

Meifang Shen (M)

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China.

Haihua Xiao (H)

Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China. hhxiao@iccas.ac.cn.
University of Chinese Academy of Sciences, Beijing, China. hhxiao@iccas.ac.cn.

Yingjie Yu (Y)

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China. yuyingjie@mail.buct.edu.cn.

Johannes Karges (J)

Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany. johannes.karges@ruhr-uni-bochum.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH