Chromosome-level genome assembly and annotation of the skinnycheek lanternfish Benthosema ptertum.


Journal

Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 29 04 2024
accepted: 23 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Lanternfish not only boast the most abundant biomass among marine fish species but also play a vital role in marine ecosystems. As one of the lanternfish species with the highest global catch, the skinnycheek lanternfish (Benthosema pterotum) is widely distributed in the Indo-Pacific region, playing a pivotal role in the marine biological pump. This study constructed the first chromosome-level genome of B. pterotum using a combination of short-read sequencing, PacBio, and Hi-C sequencing technologies. The genome size of B. pterotum is 1,272.53 Mb, with a contig N50 of 810 Kb and a scaffold N50 of 54.49 M. More than 99.65% of contigs were successfully anchored onto 24 pseudochromosomes, and 95.7% of BUSCO genes were identified within the genome, demonstrating the high level of completeness in genome assembly. A total of 24,934 protein-coding genes were predicted, of which 99.02% were functionally annotated. The successful assembly of a high-quality genome for B. pterotum provides valuable genetic resources for better understanding its biological characteristics and potentially those of all lanternfish species.

Identifiants

pubmed: 39477948
doi: 10.1038/s41597-024-04039-9
pii: 10.1038/s41597-024-04039-9
doi:

Types de publication

Journal Article Dataset

Langues

eng

Sous-ensembles de citation

IM

Pagination

1178

Informations de copyright

© 2024. The Author(s).

Références

WoRMS Editorial Board. World Register of Marine Species. Available from https://www.marinespecies.org/ at VLIZ. https://www.marinespecies.org/aphia.php?p=popup&name=citation , https://doi.org/10.14284/170 (2023).
Fricke, R., Eschmeyer, W. & Fong, J. D. Eschmeyer’s catalog of fishes. Available at http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp . https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (2024).
Haygood, M. G., Edwards, D. B., Mowlds, G. & Rosenblatt, R. H. Bioluminescence of myctophid and stomiiform fishes is not due to bacterial luciferase. J. Exp. Zool. 270, 225–231 (1994).
doi: 10.1002/jez.1402700212
Yano, D., Bessho-Uehara, M., Paitio, J., Iwasaka, M. & Oba, Y. 14-3-3 proteins are luciferases candidate proteins from lanternfish Diaphus watasei. Photochem Photobiol Sci 22, 263–277 (2022).
doi: 10.1007/s43630-022-00311-2 pubmed: 36197650
Homaei, A., Khajeh, K., Sariri, R. & Kamrani, E. An emphatic study on the luciferin-luciferase bioluminescence system of Benthosema pterotum. Fish Physiol Biochem 49, 1409–1419 (2023).
doi: 10.1007/s10695-023-01264-8 pubmed: 37943346
Homaei, A. A. et al. Purification and characterization of a novel thermostable luciferase from Benthosema pterotum. J Photoch Photobio B 125, 131–136 (2013).
doi: 10.1016/j.jphotobiol.2013.05.015
Paxton, J. R. Osteology and Relationships of the Lanternfishes (Family Myctophidae). Bull. Nat. Hist. Mus. Los Angel. Cty. 13, 1–81 (1972).
Chen, S. Fauna Sinica Osteichthyes: Myctophiformes Cetomimiformes Osteoglossiformes. (Beijing: Science Press, 2002).
Poulsen, J. Y. et al. Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of myctophiformes (Neoteleostei). BMC Evol Biol 13, 111 (2013).
doi: 10.1186/1471-2148-13-111 pubmed: 23731841 pmcid: 3682873
D’elia, M. et al. Diel variation in the vertical distribution of deep-water scattering layers in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers 115, 91–102 (2016).
doi: 10.1016/j.dsr.2016.05.014
Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J Marine Syst 157, 82–91 (2016).
doi: 10.1016/j.jmarsys.2016.01.004
Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat Commun 5, 3271 (2014).
doi: 10.1038/ncomms4271 pubmed: 24509953
Cherel, Y., Fontaine, C., Richard, P. & Labatc, J.-P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 55, 324–332 (2010).
doi: 10.4319/lo.2010.55.1.0324
Hudson, J. M., Steinberg, D. K., Sutton, T. T., Graves, J. E. & Latour, R. J. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge. Deep Sea Research Part I: Oceanographic Research Papers 93, 104–116 (2014).
doi: 10.1016/j.dsr.2014.07.002
FAOSTAT. Food and Agriculture Organization of the United Nations. https://www.fao.org/fishery/en/fishstat (2023).
Dypvik, E. & Kaartvedt, S. Vertical migration and diel feeding periodicity of the skinnycheek lanternfish (Benthosema pterotum) in the Red Sea. Deep Sea Research Part I: Oceanographic Research Papers 72, 9–16 (2013).
doi: 10.1016/j.dsr.2012.10.012
Wisner, R. L. The Taxonomy and Distribution of Lanternfishes (Family Myctophidae) of the Eastern Pacific Ocean. (Bay St. Louis, Miss: Navy Ocean Research and Development Activity, 1974).
Zahuranec, B. et al. Cryptic speciation in the mesopelagic environment: Molecular phylogenetics of the lanternfish genus Benthosema. Mar Genom 7, 7–10 (2012).
doi: 10.1016/j.margen.2012.05.001
Musilova, Z., Cortesi, F. & Matschiner, M. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588–592 (2019).
doi: 10.1126/science.aav4632 pubmed: 31073066 pmcid: 6628886
Martin, P. R., Olson, E. E., Girard, M. G., Smith, W. L. & Davis, M. P. Light in the darkness: New perspective on lanternfish relationships and classification using genomic and morphological data. Mol Phylogenet Evol 121, 71–85 (2018).
doi: 10.1016/j.ympev.2017.12.029 pubmed: 29305244
Malmstrøm, M., Matschiner, M., Tørresen, O. K., Jakobsen, K. S. & Jentoft, S. Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Sci Data 4, 160132 (2017).
doi: 10.1038/sdata.2016.132 pubmed: 28094797 pmcid: 5240625
Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, 1–6 (2018).
doi: 10.1093/gigascience/gix120 pubmed: 29659813 pmcid: 5827348
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).
doi: 10.1016/S0022-2836(05)80360-2 pubmed: 2231712
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
doi: 10.1093/bioinformatics/btr011 pubmed: 21217122 pmcid: 3051319
Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).
doi: 10.1093/bioinformatics/btx153 pubmed: 28369201 pmcid: 5870704
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
doi: 10.1101/gr.215087.116 pubmed: 28298431 pmcid: 5411767
Huang, S., Kang, M. & Xu, A. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 33, 2577–2579 (2017).
doi: 10.1093/bioinformatics/btx220 pubmed: 28407147 pmcid: 5870766
Walker, B. J. et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 9, e112963 (2014).
doi: 10.1371/journal.pone.0112963 pubmed: 25409509 pmcid: 4237348
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16, 259 (2015).
doi: 10.1186/s13059-015-0831-x pubmed: 26619908 pmcid: 4665391
Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 3, 95–98 (2016).
doi: 10.1016/j.cels.2016.07.002 pubmed: 27467249 pmcid: 5846465
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
doi: 10.1126/science.aal3327 pubmed: 28336562 pmcid: 5635820
Tarailo‐Graovac, M. & Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Curr Protoc Bioinformatics 25 (2009).
Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–W268 (2007).
doi: 10.1093/nar/gkm286 pubmed: 17485477 pmcid: 1933203
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6, 11 (2015).
doi: 10.1186/s13100-015-0041-9 pubmed: 26045719 pmcid: 4455052
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).
doi: 10.1093/bioinformatics/btn013 pubmed: 18218656
Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).
doi: 10.1101/gr.1865504 pubmed: 15123596 pmcid: 479130
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650–1667 (2016).
doi: 10.1038/nprot.2016.095 pubmed: 27560171 pmcid: 5032908
Elsik, C. G. et al. Creating a honey bee consensus gene set. Genome Biol 8, R13 (2007).
doi: 10.1186/gb-2007-8-1-r13 pubmed: 17241472 pmcid: 1839126
Liu, Q., Ding, S. & Liu, S. NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_039105355.1 (2024).
Liu, Q., Liu, S. & Ding, S. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP500492 (2024).
Liu, Q. Chromosome-level genome assembly of the skinnycheek lanternfish Benthosema ptertum. figshare https://doi.org/10.6084/m9.figshare.25710927 (2024).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
doi: 10.1093/bioinformatics/btp324 pubmed: 19451168 pmcid: 2705234
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol 21, 245 (2020).
doi: 10.1186/s13059-020-02134-9 pubmed: 32928274 pmcid: 7488777
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
doi: 10.1093/bioinformatics/btv351 pubmed: 26059717

Auteurs

Qiaohong Liu (Q)

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China.

Xiaoying Cao (X)

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China.

Lisheng Wu (L)

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China.

Huan Wang (H)

Yellow sea fisheries research institute, Chinese Academy of Fishery Sciences, Qingdao, 266000, China.

Hai Li (H)

Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen, 361005, China.

Longshan Lin (L)

Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen, 361005, China.

Shufang Liu (S)

Yellow sea fisheries research institute, Chinese Academy of Fishery Sciences, Qingdao, 266000, China. liusf@ysfri.ac.cn.

Shaoxiong Ding (S)

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China. sxding@xmu.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH