Structural dynamics of human deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase).
Human dUTPase
Multidimensional NMR
Protein dynamics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
02
08
2024
accepted:
15
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Structural- and functional heterogeneity, as well as allosteric regulation, in homo-monomeric enzymes is a highly active area of research. One such enzyme is human nuclear-associated deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), which has emerged as an interesting drug target in combination therapy with traditional nucleotide analogue treatment of cancer. We report, for the first time, a full structural dynamics study of human dUTPase by NMR. dUTPase has been investigated in terms of structural dynamics in its apo form, in complex with the modified substrate resistant to hydrolysis, 2'-deoxyuridine 5'-α,β-imido-triphosphate (dUpNHpp), as well as the product, 2'-deoxy-uridine-monophosphate (dUMP). The apo form of the enzyme displayed slow dynamics in the milli- to microsecond regime in relaxation dispersion experiments, which was further slowed down to observable heterogeneity upon substrate-analogue binding. The results suggest that the non-hydrolysable substrate-analogue traps the enzyme in the conformational isomerization step that has been previously suggested to be part of the enzyme catalysis kinetics cycle. The observed heterogeneity fits well with the pattern expected to emerge from the suggested kinetic model, and no evidence for homotropic allosterism was found. The heatmaps of the slow dynamics, chemical shift perturbation upon substrate binding and conserved regions of the enzyme sequence all displayed a similar pattern, which suggests that the structural dynamics is finely tuned and important for the biological function of the enzyme for binding, conformational shift, catalysis and substrate release.
Identifiants
pubmed: 39477983
doi: 10.1038/s41598-024-76548-x
pii: 10.1038/s41598-024-76548-x
doi:
Substances chimiques
dUTP pyrophosphatase
EC 3.6.1.23
Pyrophosphatases
EC 3.6.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26081Informations de copyright
© 2024. The Author(s).
Références
Baldo, A. M. & McClure, M. A. Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts. J. Virol. 73 (9), 7710–7721 (1999).
doi: 10.1128/JVI.73.9.7710-7721.1999
pubmed: 10438861
Vertessy, B. G. & Toth, J. Keeping uracil out of DNA: Physiological role, structure and catalytic mechanism of dUTPases. Acc. Chem. Res. 42 (1), 97–106 (2009).
doi: 10.1021/ar800114w
pubmed: 18837522
Whittingham, J. L. et al. dUTPase as a platform for antimalarial drug design: Structural basis for the selectivity of a class of nucleoside inhibitors. Structure. 13 (2), 329–338 (2005).
doi: 10.1016/j.str.2004.11.015
pubmed: 15698576
Chan, S. et al. Crystal structure of the Mycobacterium tuberculosis dUTPase: Insights into the catalytic mechanism. J. Mol. Biol. 341 (2), 503–517 (2004).
doi: 10.1016/j.jmb.2004.06.028
pubmed: 15276840
Chano, T. et al. Differentially expressed genes in multidrug resistant variants of U-2 OS human osteosarcoma cells. Oncol. Rep. 11 (6), 1257–1263 (2004).
pubmed: 15138564
Wilson, P. M. et al. Regulation of human dUTPase gene expression and p53-mediated transcriptional repression in response to oxaliplatin-induced DNA damage. Nucleic Acids Res. 37 (1), 78–95 (2009).
doi: 10.1093/nar/gkn910
pubmed: 19015155
Miyahara, S. et al. Discovery of a novel class of potent human deoxyuridine triphosphatase inhibitors remarkably enhancing the antitumor activity of thymidylate synthase inhibitors. J. Med. Chem. 55 (7), 2970–2980 (2012).
doi: 10.1021/jm201628y
pubmed: 22339362
Miyahara, S. et al. Discovery of highly potent human deoxyuridine triphosphatase inhibitors based on the conformation restriction strategy. J. Med. Chem. 55 (11), 5483–5496 (2012).
doi: 10.1021/jm300416h
pubmed: 22607122
Mol, C. D. et al. Human dUTP pyrophosphatase: Uracil recognition by a beta hairpin and active sites formed by three separate subunits. Structure 4(9), 1077–1092 (1996).
doi: 10.1016/S0969-2126(96)00114-1
pubmed: 8805593
Dubrovay, Z. et al. Multidimensional NMR identifies the conformational shift essential for catalytic competence in the 60-kDa Drosophila melanogaster dUTPase trimer. J. Biol. Chem. 279 (17), 17945–17950 (2004).
doi: 10.1074/jbc.M313644200
pubmed: 14724273
Kovari, J. et al. Altered active site flexibility and a structural metal-binding site in eukaryotic dUTPase: Kinetic characterization, folding, and crystallographic studies of the homotrimeric Drosophila enzyme. J. Biol. Chem. 279 (17), 17932–17944 (2004).
doi: 10.1074/jbc.M313643200
pubmed: 14724274
Toth, J. et al. Kinetic mechanism of human dUTPase, an essential nucleotide pyrophosphatase enzyme. J. Biol. Chem. 282 (46), 33572–33582 (2007).
doi: 10.1074/jbc.M706230200
pubmed: 17848562
Varga, B. et al. Active site closure facilitates juxtaposition of reactant atoms for initiation of catalysis by human dUTPase. FEBS Lett. 581 (24), 4783–4788 (2007).
doi: 10.1016/j.febslet.2007.09.005
pubmed: 17880943
Larsson, G., Nyman, P. O. & Kvassman, J. O. Kinetic characterization of dUTPase from Escherichia coli. J. Biol. Chem. 271 (39), 24010–24016 (1996).
doi: 10.1074/jbc.271.39.24010
pubmed: 8798636
Vertessy, B. G. et al. Specific derivatization of the active site tyrosine in dUTPase perturbs ligand binding to the active site. Biochem. Biophys. Res. Commun. 219 (2), 294–300 (1996).
doi: 10.1006/bbrc.1996.0226
pubmed: 8604980
Szabó, J. E. et al. Trading in cooperativity for specificity to maintain uracil-free DNA. Sci. Rep. 6, 24219 (2016).
doi: 10.1038/srep24219
pubmed: 27063406
pmcid: 4827122
Barabás, O. et al. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling. Nucleic Acids Res. 41 (22), 10542–10555 (2013).
doi: 10.1093/nar/gkt756
pubmed: 23982515
pmcid: 3905902
Garcia-Nafria, J. et al. Tying down the arm in Bacillus dUTPase: Structure and mechanism. Acta Crystallogr. Sect. D. 69 (8), 1367–1380 (2013).
doi: 10.1107/S090744491300735X
Isaksson, J. et al. Backbone Nuclear magnetic resonance assignment of human deoxyuridine 5’-triphosphate nucleotidohydrolase (dUTPase). Biomol. NMR Assignments. https://doi.org/10.1007/s12104-013-9457-7 (2013).
doi: 10.1007/s12104-013-9457-7
Jarymowycz, V. A. & Stone, M. J. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 106 (5), 1624–1671 (2006).
doi: 10.1021/cr040421p
pubmed: 16683748
Vallurupalli, P. et al. Measurement of bond vector orientations in invisible excited states of proteins. Proc. Natl. Acad. Sci. U S A. 104 (47), 18473–18477 (2007).
doi: 10.1073/pnas.0708296104
pubmed: 18006656
Korzhnev, D. M. & Kay, L. E. Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: An application to protein folding. Acc. Chem. Res. 41 (3), 442–451 (2008).
doi: 10.1021/ar700189y
pubmed: 18275162
Vallurupalli, P., Hansen, D. F. & Kay, L. E. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc. Natl. Acad. Sci. U S A. 105 (33), 11766–11771 (2008).
doi: 10.1073/pnas.0804221105
pubmed: 18701719
Hwang, T. L., van Zijl, P. C. M. & Mori, S. Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN Chemical EXchange (CLEANEX-PM) Approach with a Fast-HSQC (FHSQC) detection Scheme. J. Biomol. NMR. 11 (2), 221–226 (1998).
doi: 10.1023/A:1008276004875
pubmed: 9679296
Kovacs, H., Agback, T. & Isaksson, J. Probing water-protein contacts in a MMP-12/CGS27023A complex by nuclear magnetic resonance spectroscopy. J. Biomol. NMR. 53 (2), 85–92 (2012).
doi: 10.1007/s10858-012-9624-7
pubmed: 22528292
Keller, R. The Computer Aided Resonance Assignment Tutorial 1st edn (CANTINA, 2004).
Delaglio, F. et al. NMRpipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR. 6, 277–293 (1995).
doi: 10.1007/BF00197809
pubmed: 8520220
Niklasson, M. et al. Comprehensive analysis of NMR data using advanced line shape fitting. J. Biomol. NMR. 69 (2), 93–99 (2017).
doi: 10.1007/s10858-017-0141-6
pubmed: 29043470
Bieri, M. & Gooley, P. R. Automated NMR relaxation dispersion data analysis using NESSY. BMC Bioinform. 12 (1), 421 (2011).
doi: 10.1186/1471-2105-12-421
Mandel, A. M., Akke, M., I.I.I.A, G. & Palmer backbone dynamics of Escherichia coli Ribonuclease HI: Correlations with structure and function in an active enzyme. J. Mol. Biol. 246 (1), 144–163 (1995).
doi: 10.1006/jmbi.1994.0073
pubmed: 7531772
d’Auvergne, E. J. & Gooley, P. R. Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and brownian rotational diffusion spaces. J. Biomol. NMR. 40 (2), 107–119 (2008).
doi: 10.1007/s10858-007-9214-2
pubmed: 18085410
d’Auvergne, E. J. & Gooley, P. R. Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the brownian rotational diffusion tensor. J. Biomol. NMR. 40 (2), 121–133 (2008).
doi: 10.1007/s10858-007-9213-3
pubmed: 18085411
Maciejewski, M. W. et al. NMRbox: A resource for Biomolecular NMR computation. Biophys. J. 112 (8), 1529–1534 (2017).
doi: 10.1016/j.bpj.2017.03.011
pubmed: 28445744
pmcid: 5406371
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7 (1), 539 (2011).
doi: 10.1038/msb.2011.75
pubmed: 21988835
pmcid: 3261699
Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 38 (suppl_2), W695–W699 (2010).
doi: 10.1093/nar/gkq313
pubmed: 20439314
pmcid: 2896090
Larsson, G., Svensson, L. A. & Nyman, P. O. Crystal structure of the Escherichia coli dUTPase in complex with a substrate analogue (dUDP). Nat. Struct. Biol. 3 (6), 532–538 (1996).
doi: 10.1038/nsb0696-532
pubmed: 8646539
Takács, E. et al. Direct contacts between conserved motifs of different subunits provide major contribution to active site organization in human and mycobacterial dUTPases. FEBS Lett. 584 (14), 3047–3054 (2010).
doi: 10.1016/j.febslet.2010.05.018
pubmed: 20493855
pmcid: 2922844
Larsson, G., Nyman, P. O. & Svensson, L. A. Crystallization and preliminary X-ray analysis of human dUTPase. Acta Crystallogr. D Biol. Crystallogr. 52 (Pt 5), 1039–1040 (1996).
doi: 10.1107/S0907444996003277
pubmed: 15299620
Kharchenko, V. et al. Dynamic 15 N{1H} NOE measurements: A tool for studying protein dynamics. J. Biomol. NMR. 74 (12), 707–716 (2020).
doi: 10.1007/s10858-020-00346-6
pubmed: 32918646
pmcid: 7701129
Bakan, A. & Bahar, I. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc. Nat. Acad. Sci., 106 (34), 14349–14354. (2009).
Marcos, E., Crehuet, R. & Bahar, I. On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm. PLoS Comput. Biol. 6 (4), e1000738 (2010).
doi: 10.1371/journal.pcbi.1000738
pubmed: 20386738
Mukherjee, S. et al. Effect of amino acid mutations on the conformational dynamics of amyloidogenic immunoglobulin light-chains: A combined NMR and in silico study. Sci. Rep. 7 (1), 10339 (2017).
doi: 10.1038/s41598-017-10906-w
pubmed: 28871194
Dobrovolska, O. et al. The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS J., (2020).