Structural basis for human OGG1 processing 8-oxodGuo within nucleosome core particles.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
17
03
2024
accepted:
22
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Base excision repair (BER) is initialized by DNA glycosylases, which recognize and flip damaged bases out of the DNA duplex into the enzymes active site, followed by cleavage of the glycosidic bond. Recent studies have revealed that all types of DNA glycosylases repair base lesions less efficiently within nucleosomes, and their repair activity is highly depended on the lesion's location within the nucleosome. To reveal the underlying molecular mechanism of this phenomenon, we determine the 3.1 Å cryo-EM structure of human 8-oxoguanine-DNA glycosylase 1 (hOGG1) bound to a nucleosome core particle (NCP) containing a common oxidative base lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). Our structural analysis shows that hOGG1 can recognize and flip 8-oxodGuo even within NCPs; however, the interaction between 8-oxodGuo and hOGG1 in a NCP context is weaker than in free DNA due to competition for nucleosomal DNA by the histones. Binding of OGG1 and the flipping of 8-oxodGuo by hOGG1 leads to a partial detachment of DNA from the histone core and a ratchet-like inward movement of nucleosomal DNA. Our findings provide insights into how the dynamic structure of nucleosomes modulate the activity of repair enzymes within chromatin.
Identifiants
pubmed: 39477986
doi: 10.1038/s41467-024-53811-3
pii: 10.1038/s41467-024-53811-3
doi:
Substances chimiques
DNA Glycosylases
EC 3.2.2.-
Nucleosomes
0
oxoguanine glycosylase 1, human
EC 3.2.2.-
8-Hydroxy-2'-Deoxyguanosine
88847-89-6
DNA
9007-49-2
Histones
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9407Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22377059
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB1361-project ID 393547839
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TRR237-project ID 369799452
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : HO2489/11-1
Informations de copyright
© 2024. The Author(s).
Références
Cadet, J. & Davies, K. J. A. Oxidative DNA damage & repair: an introduction. Free Radic. Biol. Med. 107, 2–12 (2017).
pubmed: 28363603
doi: 10.1016/j.freeradbiomed.2017.03.030
Poetsch, A. R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 18, 207–219 (2020).
pubmed: 31993111
doi: 10.1016/j.csbj.2019.12.013
Burrows, C. J. & Muller, J. G. Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1151 (1998).
pubmed: 11848927
doi: 10.1021/cr960421s
Cadet, J., Douki, T. & Ravanat, J. L. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc. Chem. Res. 41, 1075–1083 (2008).
pubmed: 18666785
doi: 10.1021/ar700245e
Kouchakdjian, M. et al. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn).dA(anti) alignment at lesion site. Biochemistry 30, 1403–1412 (1991).
pubmed: 1991121
doi: 10.1021/bi00219a034
Shibutani, S., Takeshita, M. & Grollman, A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431–434 (1991).
pubmed: 1992344
doi: 10.1038/349431a0
Duarte, V. et al. Oxaluric acid as the major product of singlet oxygen-mediated oxidation of 8-oxo-7,8-dihydroguanine in DNA. J. Am. Chem. Soc. 122, 12622–12628 (2000).
doi: 10.1021/ja002218r
Luo, W. C., Muller, J. G. & Burrows, C. J. The ph-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine. Org. Lett. 3, 2801–2804 (2001).
pubmed: 11529760
doi: 10.1021/ol0161763
Fleming, A. M., Muller, J. G., Dlouhy, A. C. & Burrows, C. J. Structural context effects in the oxidation of 8-oxo-7,8-dihydro-2’-deoxyguanosine to hydantoin products: electrostatics, base stacking, and base pairing. J. Am. Chem. Soc. 134, 15091–15102 (2012).
pubmed: 22880947
doi: 10.1021/ja306077b
Hickerson, R. P., Chepanoske, C. L., Williams, S. D., David, S. S. & Burrows, C. J. Mechanism-based DNA-protein cross-linking of muty via oxidation of 8-oxoguanosine. J. Am. Chem. Soc. 121, 9901–9902 (1999).
doi: 10.1021/ja9923484
McKibbin, P. L. et al. Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J. Am. Chem. Soc. 135, 13851–13861 (2013).
pubmed: 23930966
doi: 10.1021/ja4059469
Bai, J., Zhang, Y., Xi, Z., Greenberg, M. M. & Zhou, C. Oxidation of 8-oxo-7,8-dihydro-2′-deoxyguanosine leads to substantial DNA-histone cross-links within nucleosome core particles. Chem. Res. Toxicol. 31, 1364–1372 (2018).
pubmed: 30412392
doi: 10.1021/acs.chemrestox.8b00244
Rogacheva, M. V. & Kuznetsova, S. A. Repair of 8-oxoguanine in DNA. The mechanisms of enzymatic catalysis. Russ. Chem. Rev. 77, 817–843 (2008).
doi: 10.1070/RC2008v077n09ABEH003778
Nash, H. M., Lu, R., Lane, W. S. & Verdine, G. L. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hogg1: direct identification, ablation and chemical reconstitution. Chem. Biol. 4, 693–702 (1997).
pubmed: 9331411
doi: 10.1016/S1074-5521(97)90225-8
Bruner, S. D., Norman, D. P. G. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).
pubmed: 10706276
doi: 10.1038/35002510
McGinty, R. K. & Tan, S. Nucleosome structure and function. Chem. Rev. 115, 2255–2273 (2015).
pubmed: 25495456
doi: 10.1021/cr500373h
Menoni, H., Shukla, M. S., Gerson, V., Dimitrov, S. & Angelov, D. Base excision repair of 8-oxog in dinucleosomes. Nucleic Acids Res. 40, 692–700 (2012).
pubmed: 21930508
doi: 10.1093/nar/gkr761
Bilotti, K., Kennedy, E. E., Li, C. & Delaney, S. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment. DNA Repair 59, 1–8 (2017).
pubmed: 28892740
doi: 10.1016/j.dnarep.2017.08.010
Bilotti, K., Tarantino, M. E. & Delaney, S. Human oxoguanine glycosylase 1 removes solution accessible 8-oxo-7,8-dihydroguanine lesions from globally substituted nucleosomes except in the dyad region. Biochemistry 57, 1436–1439 (2018).
pubmed: 29341606
doi: 10.1021/acs.biochem.7b01125
Ren, M., Shang, M., Wang, H., Xi, Z. & Zhou, C. Histones participate in base excision repair of 8-oxodguo by transiently cross-linking with active repair intermediates in nucleosome core particles. Nucleic Acids Res. 49, 257–268 (2021).
pubmed: 33290564
doi: 10.1093/nar/gkaa1153
Ren, M., Greenberg, M. M. & Zhou, C. Participation of histones in DNA damage and repair within nucleosome core particles: mechanism and applications. Acc. Chem. Res. 55, 1059–1073 (2022).
pubmed: 35271268
doi: 10.1021/acs.accounts.2c00041
Dalhus, B. et al. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Structure 19, 117–127 (2011).
pubmed: 21220122
doi: 10.1016/j.str.2010.09.023
Shigdel, U. K. et al. The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase. Nat. Commun. 11, 4437 (2020).
pubmed: 32895378
doi: 10.1038/s41467-020-18290-2
Vasudevan, D., Chua, E. Y. D. & Davey, C. A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 403, 1–10 (2010).
pubmed: 20800598
doi: 10.1016/j.jmb.2010.08.039
Pettersen, E. F. et al. UCSF chimerax: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Fogolari, F. et al. Bluues: A program for the analysis of the electrostatic properties of proteins based on generalized born radii. BMC Bioinforma. 13, S18 (2012).
doi: 10.1186/1471-2105-13-S4-S18
Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).
pubmed: 1438297
doi: 10.1073/pnas.89.22.10915
Eddy, S. R. Where did the blosum62 alignment score matrix come from? Nat. Biotechnol. 22, 1035–1036 (2004).
pubmed: 15286655
doi: 10.1038/nbt0804-1035
Li, S., Olson, W. K. & Lu, X.-J. Web 3dna 2.0 for the analysis, visualization, and modeling of 3d nucleic acid structures. Nucleic Acids Res. 47, W26–W34 (2019).
pubmed: 31114927
doi: 10.1093/nar/gkz394
Fromme, J. C. & Verdine, G. L. DNA lesion recognition by the bacterial repair enzyme mutm*. J. Biol. Chem. 278, 51543–51548 (2003).
pubmed: 14525999
doi: 10.1074/jbc.M307768200
Banerjee, A., Yang, W., Karplus, M. & Verdine, G. L. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434, 612–618 (2005).
pubmed: 15800616
doi: 10.1038/nature03458
Banerjee, A., Santos, W. L. & Verdine, G. L. Structure of a DNA glycosylase searching for lesions. Science 311, 1153–1157 (2006).
pubmed: 16497933
doi: 10.1126/science.1120288
Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine, G. L. & Xie, X. S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl Acad. Sci. USA 103, 5752–5757 (2006).
pubmed: 16585517
doi: 10.1073/pnas.0509723103
Qi, Y. et al. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Nature 462, 762–766 (2009).
pubmed: 20010681
doi: 10.1038/nature08561
Baute, J. & Depicker, A. Base excision repair and its role in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol. 43, 239–276 (2008).
pubmed: 18756381
doi: 10.1080/10409230802309905
Cook, J. C. & Delaney, S. The domino effect: nucleosome dynamics and the regulation of base excision repair enzymes. DNA 2, 248–263 (2022).
doi: 10.3390/dna2040018
Rodriguez, Y., Hinz, J. M. & Smerdon, M. J. Accessing DNA damage in chromatin: preparing the chromatin landscape for base excision repair. DNA Repair 32, 113–119 (2015).
pubmed: 25957487
doi: 10.1016/j.dnarep.2015.04.021
Rodriguez, Y. & Smerdon, M. J. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J. Biol. Chem. 288, 13863–13875 (2013).
pubmed: 23543741
pmcid: 3650422
doi: 10.1074/jbc.M112.441444
Maher, R. L., Wallace, S. S. & Pederson, D. S. The lyase activity of bifunctional DNA glycosylases and the 3′-diesterase activity of ape1 contribute to the repair of oxidized bases in nucleosomes. Nucleic Acids Res. 47, 2922–2931 (2019).
pubmed: 30649547
pmcid: 6451105
doi: 10.1093/nar/gky1315
Prasad, A., Wallace, S. S. & Pederson, D. S. Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase nth1. Mol. Cell. Biol. 27, 8442–8453 (2007).
pubmed: 17923696
doi: 10.1128/MCB.00791-07
Kennedy, E. E., Li, C. & Delaney, S. Global repair profile of human alkyladenine DNA glycosylase on nucleosomes reveals DNA packaging effects. ACS Chem. Biol. 14, 1687–1692 (2019).
pubmed: 31310499
doi: 10.1021/acschembio.9b00263
Weaver, T. M. et al. Structural basis for ape1 processing DNA damage in the nucleosome. Nat. Commun. 13, 5390 (2022).
pubmed: 36104361
doi: 10.1038/s41467-022-33057-7
Zheng, L., Tsai, B. & Gao, N. Structural and mechanistic insights into the DNA glycosylase aag-mediated base excision in nucleosome. Cell Discov. 9, 62 (2023).
pubmed: 37339965
doi: 10.1038/s41421-023-00560-0
Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).
pubmed: 9514715
doi: 10.1006/jmbi.1997.1494
Olmon, E. D. & Delaney, S. Differential ability of five DNA glycosylases to recognize and repair damage on nucleosomal DNA. ACS Chem. Biol. 12, 692–701 (2017).
pubmed: 28085251
doi: 10.1021/acschembio.6b00921
Hinz, J. M., Rodriguez, Y. & Smerdon, M. J. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc. Natl Acad. Sci. USA 107, 4646–4651 (2010).
pubmed: 20176960
doi: 10.1073/pnas.0914443107
Zheng, S. Q. et al. Motioncor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466
doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. Ctffind4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980
doi: 10.1016/j.jsb.2015.08.008
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. Cryosparc: Algorithms for rapid unsupervised cryo-em structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Scheres, S. H. Relion: Implementation of a bayesian approach to cryo-em structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701
doi: 10.1016/j.jsb.2012.09.006
Asarnow, D., Palovcak, E. & Cheng, Y. UCSF pyem v0.5. Zenodo. https://doi.org/10.5281/zenodo.3576630 (2019).
Punjani, A. & Fleet, D. J. 3dflex: Determining structure and motion of flexible proteins from cryo-em. Nat. Methods 20, 860–870 (2023).
pubmed: 37169929
doi: 10.1038/s41592-023-01853-8
Sanchez-Garcia, R. et al. Deepemhancer: A deep learning solution for cryo-em volume post-processing. Commun. Biol. 4, 874 (2021).
pubmed: 34267316
doi: 10.1038/s42003-021-02399-1
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-em through tilting. Nat. Methods 14, 793–796 (2017).
pubmed: 28671674
doi: 10.1038/nmeth.4347
Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Afonine, P. V. et al. Real-space refinement in phenix for cryo-em and crystallography. Acta crystallogr. D. Struct. biol. 74, 531–544 (2018).
pubmed: 29872004
doi: 10.1107/S2059798318006551
Liebschner, D. et al. Macromolecular structure determination using x-rays, neutrons and electrons: recent developments in phenix. Acta crystallogr. D. Struct. biol. 75, 861–877 (2019).
pubmed: 31588918
doi: 10.1107/S2059798319011471
Croll, T. I. Isolde: A physically realistic environment for model building into low-resolution electron-density maps. Acta crystallogr. D. Struct. biol. 74, 519–530 (2018).
pubmed: 29872003
doi: 10.1107/S2059798318002425