Withaferin a modulation of microglia autophagy mitigates neuroinflammation and enhances cognitive function in POCD.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 10 2024
Historique:
received: 20 05 2024
accepted: 03 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

With the aging process of the global population and the development of medical technology, the cases of postoperative cognitive dysfunction (POCD) are also increasing. Due to the complexity of the pathogenesis, urgent treatment has been sought. Neuroinflammation induced by the accumulation of lipid droplets (LDs) in microglia has been closely watched in recent years and is also considered to be an important cause of nerve damage. Our study found that derived from Withania somnifera, Withaferin A (WA) could reduce the accumulation of LDs in the hippocampus of POCD mice, inhibit the expression of inflammatory factor interleukin-1β (IL-1β), and improve the cognitive ability of mice. Further in vitro experimental studies showed that WA increased the autophagy level of microglia, promoted the degradation of LDs, and reduced the production of inflammatory factors. In this regard, our comprehensive research endeavor holds the potential to furnish novel insights into therapeutic strategies aimed at addressing POCD and its associated neural impairments.

Identifiants

pubmed: 39478022
doi: 10.1038/s41598-024-75284-6
pii: 10.1038/s41598-024-75284-6
doi:

Substances chimiques

withaferin A L6DO3QW4K5
Withanolides 0
Interleukin-1beta 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26112

Subventions

Organisme : National Natural Science Foundation of China
ID : 82360227
Organisme : Natural Science Foundation of Jiangxi Province
ID : 20232BAB206060

Informations de copyright

© 2024. The Author(s).

Références

Needham, M. J., Webb, C. E. & Bryden, D. C. Postoperative cognitive dysfunction and dementia: What we need to know and do. Br. J. Anaesth. 119, i115–i125 (2017).
doi: 10.1093/bja/aex354 pubmed: 29161395
Travica, N., Lotfaliany, M., Marriott, A., Safavynia, S. A., Lane, M. M., Gray, L., Veronese, N., Berk, M., Skvarc, D., Aslam, H., Gamage, E., Formica, M., Bishop, K. & Marx, W. Peri-operative risk factors associated with post-operative cognitive dysfunction (POCD): An umbrella review of meta-analyses of observational studies. J. Clin. Med. 12 (2023).
Migirov, A., Chahar, P. & Maheshwari, K. Postoperative delirium and neurocognitive disorders. Curr. Opin. Crit. Care 27, 686–693 (2021).
doi: 10.1097/MCC.0000000000000882 pubmed: 34545028
Li, D., Chen, M., Meng, T. & Fei, J. Hippocampal microglial activation triggers a neurotoxic-specific astrocyte response and mediates etomidate-induced long-term synaptic inhibition. J. Neuroinflamm. 17, 109 (2020).
doi: 10.1186/s12974-020-01799-0
Li, Z., Zhu, Y., Kang, Y., Qin, S. & Chai, J. Neuroinflammation as the underlying mechanism of postoperative cognitive dysfunction and therapeutic strategies. Front. Cell. Neurosci. 16, 843069 (2022).
doi: 10.3389/fncel.2022.843069 pubmed: 35418837 pmcid: 8995749
Farmer, B. C., Kluemper, J,& Johnson, L.A. Apolipoprotein E4 alters astrocyte fatty acid metabolism and lipid Droplet formation. Cells 8 (2019).
Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9-21.e5 (2017).
doi: 10.1016/j.devcel.2017.06.003 pubmed: 28697336 pmcid: 5553613
Walther, T. C., Chung, J. & Farese, R. V. Jr. Lipid Droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).
doi: 10.1146/annurev-cellbio-100616-060608 pubmed: 28793795 pmcid: 6986389
Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).
doi: 10.1038/s41580-018-0085-z pubmed: 30523332 pmcid: 6746329
Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522-1535.e14 (2019).
doi: 10.1016/j.cell.2019.04.001 pubmed: 31130380
Moulton, M. J., Barish, S., Ralhan, I., Chang, J., Goodman, L. D., Harland, J. G., Marcogliese, P. C., Johansson, J. O., Ioannou, M. S. & Bellen, H. J. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes. Proc. Natl. Acad. Sci. USA 118 (2021).
Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020).
doi: 10.1038/s41593-019-0566-1 pubmed: 31959936 pmcid: 7595134
Victor, M. B. et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 29, 1197-1212.e8 (2022).
doi: 10.1016/j.stem.2022.07.005 pubmed: 35931030 pmcid: 9623845
Zhang, L. et al. CB2R activation regulates TFEB-mediated autophagy and affects lipid metabolism and inflammation of astrocytes in POCD. Front. Immunol. 13, 836494 (2022).
doi: 10.3389/fimmu.2022.836494 pubmed: 35392078 pmcid: 8981088
Liu, L., MacKenzie, K. R., Putluri, N., Maletić-Savatić, M. & Bellen, H. J. The glia-neuron lactate shuttle and elevated ros promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 26, 719-737.e6 (2017).
doi: 10.1016/j.cmet.2017.08.024 pubmed: 28965825 pmcid: 5677551
Yang, Y. et al. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radic. Bbiol. Med. 178, 134–146 (2022).
doi: 10.1016/j.freeradbiomed.2021.12.004
Zhang, L. et al. Dexmedetomidine mitigated NLRP3-mediated neuroinflammation via the ubiquitin-autophagy pathway to improve perioperative neurocognitive disorder in mice. Front. Pharmacol. 12, 646265 (2021).
doi: 10.3389/fphar.2021.646265 pubmed: 34079457 pmcid: 8165564
Das, R., Rauf, A., Akhter, S., Islam, M. N., Emran, T. B., Mitra, S., Khan, I. N. & Mubarak, M. S. Role of Withaferin A and its derivatives in the management of Alzheimer’s disease: Recent trends and future perspectives. Molecules 26 (2021).
Zhou, Z. X. et al. Withaferin A inhibits ferroptosis and protects against intracerebral hemorrhage. Neural Regener. Res. 18, 1308–1315 (2023).
doi: 10.4103/1673-5374.355822
Zhou, Z. et al. Withaferin A alleviates traumatic brain injury induced secondary brain injury via suppressing apoptosis in endothelia cells and modulating activation in the microglia. Eur. J. Pharmacol. 874, 172988 (2020).
doi: 10.1016/j.ejphar.2020.172988 pubmed: 32032599
Zhao, M. et al. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson’s disease. Cell Death Differ. 28, 2517–2535 (2021).
doi: 10.1038/s41418-021-00767-2 pubmed: 33762743 pmcid: 8329302
Kwon, H. S. & Koh, S. H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 9, 42 (2020).
doi: 10.1186/s40035-020-00221-2 pubmed: 33239064 pmcid: 7689983
Woodburn, S. C., Bollinger, J. L. & Wohleb, E. S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflamm. 18, 258 (2021).
doi: 10.1186/s12974-021-02309-6
Hickman, S., Izzy, S., Sen, P., Morsett, L. & El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci. 21, 1359–1369 (2018).
doi: 10.1038/s41593-018-0242-x pubmed: 30258234 pmcid: 6817969
Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Revi. Immunol. 35, 441–468 (2017).
doi: 10.1146/annurev-immunol-051116-052358
Zhu, H. et al. Targeting CB2R in astrocytes for Parkinson’s disease therapy: Unraveling the Foxg1-mediated neuroprotective mechanism through autophagy-mediated NLRP3 degradation. J. Neuroinflamm. 20, 304 (2023).
doi: 10.1186/s12974-023-02989-2
Fleming, A. et al. The different autophagy degradation pathways and neurodegeneration. Neuron 110, 935–966 (2022).
doi: 10.1016/j.neuron.2022.01.017 pubmed: 35134347 pmcid: 8930707
Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J. & Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Revi. Mol. Cell Biol. 24, 167–185 (2023).
doi: 10.1038/s41580-022-00542-2
Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cadwell, K., Cecconi, F., Choi, A. M. K., Choi, M. E., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Deretic, V., Dikic, I., Elazar, Z., Eskelinen, E. L., Fimia, G. M., Gewirtz, D. A., Green, D. R., Hansen, M., Jäättelä, M., Johansen, T., Juhász, G., Karantza, V., Kraft, C., Kroemer, G., Ktistakis, N. T., Kumar, S., Lopez-Otin, C., Macleod, K. F., Madeo, F., Martinez, J., Meléndez, A., Mizushima, N., Münz, C., Penninger, J. M., Perera, R. M., Piacentini, M., Reggiori, F., Rubinsztein, D. C., Ryan, K. M., Sadoshima, J., Santambrogio, L., Scorrano, L., Simon, H. U., Simon, A. K., Simonsen, A., Stolz, A., Tavernarakis, N., Tooze, S. A., Yoshimori, T., Yuan, J., Yue, Z., Zhong, Q., Galluzzi, L. & Pietrocola, F. Autophagy in major human diseases. EMBO J. 40, e108863 (2021).
Ajoolabady, A. et al. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol. Therap. 225, 107848 (2021).
doi: 10.1016/j.pharmthera.2021.107848
Choi, I. et al. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat. Cell Biol. 25, 963–974 (2023).
doi: 10.1038/s41556-023-01158-0 pubmed: 37231161 pmcid: 10950302
Han, X. et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy 15, 1860–1881 (2019).
doi: 10.1080/15548627.2019.1596481 pubmed: 30966861 pmcid: 6844502

Auteurs

Haijun Hu (H)

Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China.

Bingbing Cao (B)

The First Hospital of Xiushui, Jiujiang, Jiangxi Province, People's Republic of China.

Dan Huang (D)

Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China.

Yue Lin (Y)

Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China.

Bin Zhou (B)

Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China.

Jun Ying (J)

Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China.

Lelin Huang (L)

Department of Anesthesiology, Lushan Rehabilitation and Recuperation Center, PLA Joint Service Forces, Jiujiang, 3320000, People's Republic of China. h13507029069@163.com.

Lieliang Zhang (L)

Department of Anesthesiology, The Second Affliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi Privince, People's Republic of China. zllndefy@163.com.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH