The detection and utilization of volatile metabolomics in Klebsiella pneumoniae by gas chromatography-ion mobility spectrometry.
Klebsiella pneumoniae
Carbapenemase
Gas chromatography-ion mobility spectrometry (GC-IMS)
Imipenem (IPM)
Volatile metabolomic
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
24
06
2024
accepted:
24
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
This research aimed to analyze the volatile compounds emitted during the proliferation of Klebsiella pneumoniae (K. pneumoniae) in the laboratory setting using gas chromatography-ion mobility spectrometry (GC-IMS) and to investigate the potential of volatile metabolomics for detecting carbapenemase-producing strains of K. pneumoniae. The volatile metabolomics of K. pneumoniae were comprehensively analyzed using GC-IMS in tryptic soy broth (TSB) as the culture medium. Afterward, the growth stabilization period (T2) served as the primary time point for analysis, with the introduction of imipenem and carbapenemase inhibitors (avibactam sodium or EDTA) during the exponential growth phase (T0) to further investigate alterations in volatile molecules associated with K. pneumoniae. Standard strains were utilized as references, while clinical strains were employed for validation purposes. At T2, a total of 22 volatile organic compounds (VOCs) associated with K. pneumoniae were identified (3 VOCs found in both monomer and dimer forms). Significant differences in VOCs were observed between carbapenemase-negative and carbapenemase-positive strains, both standard and clinical, following the introduction of imipenem. Furthermore, the addition of avibactam sodium led to distinct changes in the VOC content of strains producing class A carbapenemase, while the addition of EDTA resulted in specific alterations in the volatile metabolic profiles of strains producing class B carbapenemase. GC-IMS demonstrated significant promise for analyzing bacterial volatile metabolomics, and its application in evaluating the volatolomics of K. pneumoniae may facilitate the timely detection of carbapenemase-producing strains.
Identifiants
pubmed: 39478041
doi: 10.1038/s41598-024-77746-3
pii: 10.1038/s41598-024-77746-3
doi:
Substances chimiques
Volatile Organic Compounds
0
carbapenemase
EC 3.5.2.6
Bacterial Proteins
0
beta-Lactamases
EC 3.5.2.6
Imipenem
71OTZ9ZE0A
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26122Subventions
Organisme : the Postgraduate Innovation Special Foundation of Jiangxi Province
ID : YC2023-B093
Organisme : the National Natural Science Foundation of China
ID : 82060391
Organisme : the Natural Science Foundation of Jiangxi Province
ID : 20202BAB216021
Organisme : the Medical Health Science and Technology Project of Jiangxi Provincial Health Commission
ID : 20201034
Organisme : Youth Science Fund of the Science and Technology Program of second affiliated Hospital, Jiangxi Medical College, Nanchang University
ID : 2019YNQN12005
Informations de copyright
© 2024. The Author(s).
Références
Hu, Y. et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008–2018. Emerg. Microbes Infect. 9 (1), 1771–1779. https://doi.org/10.1080/22221751.2020.1799721 (2020). Epub 2020/07/22.
doi: 10.1080/22221751.2020.1799721
pubmed: 32689907
pmcid: 7475806
Chen, I. R. et al. Clinical and Microbiological Characteristics of Bacteremic Pneumonia Caused by Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 12, 903682. https://doi.org/10.3389/fcimb.2022.903682 (2022). Epub 2022/07/12.
doi: 10.3389/fcimb.2022.903682
pubmed: 35811668
pmcid: 9259976
Bedenic, B. et al. Klebsiella pneumoniae carbapenemase (KPC) in urinary infection isolates. Arch. Microbiol. 203 (4), 1825–1831. https://doi.org/10.1007/s00203-020-02161-x (2021). Epub 2021/01/29.
doi: 10.1007/s00203-020-02161-x
pubmed: 33507339
Zhou, Q. et al. Characterization of Hypervirulent and Carbapenem-Resistant K. pneumoniae Isolated from Neurological Patients. Infect. Drug Resist. 16, 403–411. https://doi.org/10.2147/IDR.S392947 (2023). Epub 2023/02/01.
doi: 10.2147/IDR.S392947
pubmed: 36718464
pmcid: 9883998
Siu, L. K., Yeh, K. M., Lin, J. C., Fung, C. P. & Chang, F. Y. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect. Dis. 12 (11), 881–887. https://doi.org/10.1016/S1473-3099(12)70205-0 (2012). Epub 2012/10/27.
doi: 10.1016/S1473-3099(12)70205-0
pubmed: 23099082
Roach, D. J. et al. Clinical and Genomic Characterization of a Cohort of Patients With Klebsiella pneumoniae Bloodstream Infection. Clin. Infect. Dis. 78 (1), 31–39. https://doi.org/10.1093/cid/ciad507 (2024). Epub 2023/08/27.
doi: 10.1093/cid/ciad507
pubmed: 37633257
Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18 (3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3 (2018). Epub 2017/12/26.
doi: 10.1016/S1473-3099(17)30753-3
pubmed: 29276051
Wang, M. et al. Multi-Drug Resistant Organism Network I. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infect. Dis. 22 (3), 401–412. https://doi.org/10.1016/S1473-3099(21)00399-6 (2022). Epub 2021/11/13.
doi: 10.1016/S1473-3099(21)00399-6
pubmed: 34767753
Hu, F. et al. Resistance reported from China antimicrobial surveillance network (CHINET) in 2018. Clin. Microbiol. 38 (12), 2275–2281. https://doi.org/10.1007/s10096-019-03673-1 (2019). Epub 2019/09/04European journal of clinical microbiology & infectious diseases: official publication of the European Society of
Jin, Z. et al. Molecular epidemiological characteristics of carbapenem-resistant Klebsiella pneumoniae among children in China. AMB Express. 12 (1), 89. https://doi.org/10.1186/s13568-022-01437-3 (2022). Epub 2022/07/14.
doi: 10.1186/s13568-022-01437-3
pubmed: 35829853
pmcid: 9279541
Hu, H. et al. Prevalence and molecular characteristics of colistin-resistant isolates among clinically isolated carbapenem-resistant Klebsiella pneumoniae in China. Int. J. Antimicrob. Agents. 62 (2), 106873. https://doi.org/10.1016/j.ijantimicag.2023.106873 (2023). Epub 2023/06/06.
doi: 10.1016/j.ijantimicag.2023.106873
pubmed: 37276893
Yang, Y. et al. Molecular characterization of carbapenem-resistant and virulent plasmids in Klebsiella pneumoniae from patients with bloodstream infections in China. Emerg. Microbes Infect. 10 (1), 700–709. https://doi.org/10.1080/22221751.2021.1906163 (2021). Epub 2021/03/20.
doi: 10.1080/22221751.2021.1906163
pubmed: 33739229
pmcid: 8023600
Rees, C. A., Franchina, F. A., Nordick, K. V., Kim, P. J. & Hill, J. E. Expanding the Klebsiella pneumoniae volatile metabolome using advanced analytical instrumentation for the detection of novel metabolites. J. Appl. Microbiol. 122 (3), 785–795. https://doi.org/10.1111/jam.13372 (2017). Epub 2016/12/09.
doi: 10.1111/jam.13372
pubmed: 27930839
Ahmed, W. M. et al. Microbial Volatiles as Diagnostic Biomarkers of Bacterial Lung Infection in Mechanically Ventilated Patients. Clin. Infect. Dis. 76 (6), 1059–1066. https://doi.org/10.1093/cid/ciac859 (2023). Epub 2022/11/01.
doi: 10.1093/cid/ciac859
pubmed: 36310531
Zhang, J. et al. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J. Breath. Res. 15 (4), 1–24. https://doi.org/10.1088/1752-7163/ac2cde (2021). Epub 2021/10/06.
doi: 10.1088/1752-7163/ac2cde
Lee, D. K. et al. In Vitro Tracking of Intracellular Metabolism-Derived Cancer Volatiles via Isotope Labeling. ACS Cent. Sci. 4 (8), 1037–1044. https://doi.org/10.1021/acscentsci.8b00296 (2018). Epub 2018/08/31.
doi: 10.1021/acscentsci.8b00296
pubmed: 30159401
pmcid: 6107874
Hu, W. et al. Volatolomics in healthcare and its advanced detection technology. Nano Res. 15 (9), 8185–8213. https://doi.org/10.1007/s12274-022-4459-3 (2022). Epub 2022/07/06.
doi: 10.1007/s12274-022-4459-3
pubmed: 35789633
pmcid: 9243817
Bean, H. D., Dimandja, J. M. & Hill, J. E. Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 901, 41–46. https://doi.org/10.1016/j.jchromb.2012.05.038 (2012). Epub 2012/06/26.
doi: 10.1016/j.jchromb.2012.05.038
pubmed: 22727751
pmcid: 4224026
Lee, S. M., Jung, J. H., Seo, J. A. & Kim, Y. S. Bioformation of Volatile and Nonvolatile Metabolites by Saccharomycopsis fibuligera KJJ81 Cultivated under Different Conditions-Carbon Sources and Cultivation Times. Molecules. 23 (11), 2762. https://doi.org/10.3390/molecules23112762 (2018). Epub 2018/10/28.
doi: 10.3390/molecules23112762
pubmed: 30366381
pmcid: 6278445
Lu, Y. et al. Use of GC-IMS for detection of volatile organic compounds to identify mixed bacterial culture medium. AMB Express. 12 (1), 31. https://doi.org/10.1186/s13568-022-01367-0 (2022). Epub 2022/03/05.
doi: 10.1186/s13568-022-01367-0
pubmed: 35244795
pmcid: 8897540
Euler, M. et al. Blood Culture Headspace Gas Analysis Enables Early Detection of Escherichia coli Bacteremia in an Animal Model of Sepsis. Antibiot. (Basel). 11 (8), 992. https://doi.org/10.3390/antibiotics11080992 (2022). Epub 2022/07/28.
doi: 10.3390/antibiotics11080992
Drees, C. et al. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures. Appl. Microbiol. Biotechnol. 103 (21–22), 9091–9101. https://doi.org/10.1007/s00253-019-10181-x (2019). Epub 2019/10/31.
doi: 10.1007/s00253-019-10181-x
pubmed: 31664484
Kiviranta, H. et al. Qualitative identification of volatile metabolites from two fungi and three bacteria species cultivated on two media. Cent. Eur. J. Public. Health. 6 (4), 296–299 (1998). Epub 1999/01/27. Cited in: Pubmed; PMID 9919382.
pubmed: 9919382
Goncalves, W. B. et al. Combination of the electronic nose with microbiology as a tool for rapid detection of Salmonella. J. Microbiol. Methods. 212, 106805. https://doi.org/10.1016/j.mimet.2023.106805 (2023). Epub 2023/08/10.
doi: 10.1016/j.mimet.2023.106805
pubmed: 37558057
Du, X. et al. High-field asymmetric waveform ion mobility spectrometry for xylene isomer separation assisted by helium-chemical modifiers. Anal. Methods. 14 (45), 4649–4658. https://doi.org/10.1039/d2ay01098d (2022). Epub 2022/11/16.
doi: 10.1039/d2ay01098d
pubmed: 36377690
Kunze-Szikszay, N. et al. Headspace analyses using multi-capillary column-ion mobility spectrometry allow rapid pathogen differentiation in hospital-acquired pneumonia relevant bacteria. BMC Microbiol. 21 (1), 69. https://doi.org/10.1186/s12866-021-02102-8 (2021). Epub 2021/03/02.
doi: 10.1186/s12866-021-02102-8
pubmed: 33641676
pmcid: 7916313
Filipiak, W. et al. GC-MS profiling of volatile metabolites produced by Klebsiella pneumoniae. Front. Mol. Biosci. 9, 1019290. https://doi.org/10.3389/fmolb.2022.1019290 (2022). Epub 2022/11/05.
doi: 10.3389/fmolb.2022.1019290
pubmed: 36330222
pmcid: 9623108
Tait, E., Perry, J. D., Stanforth, S. P. & Dean, J. R. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. J. Chromatogr. Sci. 52 (4), 363–373. https://doi.org/10.1093/chromsci/bmt042 (2014). Epub 2013/05/11.
doi: 10.1093/chromsci/bmt042
pubmed: 23661670
Luo, H. et al. Rapid Identification of Carbapenemase-Producing Klebsiella pneumoniae Using Headspace Solid-Phase Microextraction Combined with Gas Chromatography-Mass Spectrometry. Infect. Drug Resist. 16, 2601–2609. https://doi.org/10.2147/IDR.S404742 (2023). Epub 2023/05/08.
doi: 10.2147/IDR.S404742
pubmed: 37152404
pmcid: 10162101
Garrido-Delgado, R., Dobao-Prieto Mdel, M., Arce, L. & Valcarcel, M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem. 187, 572–579. https://doi.org/10.1016/j.foodchem.2015.04.082 (2015). Epub 2015/05/16.
doi: 10.1016/j.foodchem.2015.04.082
pubmed: 25977065
Schwolow, S., Gerhardt, N., Rohn, S. & Weller, P. Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys-is it worth to go the extra mile? Anal. Bioanal Chem. ;411(23):6005–6019. (2019). Epub 2019/06/30. doi: https://doi.org/10.1007/s00216-019-01978-w . Cited in: Pubmed; PMID 31250065.
Rees, C. A., Smolinska, A. & Hill, J. E. The volatile metabolome of Klebsiella pneumoniae in human blood. J. Breath. Res. 10 (2), 027101. https://doi.org/10.1088/1752-7155/10/2/027101 (2016). Epub 2016/05/11.
doi: 10.1088/1752-7155/10/2/027101
pubmed: 27163334
Rees, C. A. et al. Volatile metabolic diversity of Klebsiella pneumoniae in nutrient-replete conditions. Metabolomics. 13 (2), 1–12. https://doi.org/10.1007/s11306-016-1161-z (2017). Epub 2017/02/01.
doi: 10.1007/s11306-016-1161-z
Centers for Disease Control and Prevention. Facility guidance for control of carbapenem-resistant Enterobacteriaceae (CRE) [EB/OL]. [2022-01-22]. https://www.cdc.gov/hai/pdfs/cre/creguidance-508.pdf
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 32th Informational Supplement. CLSI Document M100-S29, Clinical and Laboratory Standards Institute, Wayne, PA. (2022).
Lacey, L., Daulton, E., Wicaksono, A., Covington, J. A. & Quenby, S. Volatile organic compound analysis, a new tool in the quest for preterm birth prediction-an observational cohort study. Sci. Rep. 10 (1), 12153. https://doi.org/10.1038/s41598-020-69142-4 (2020). Epub 2020/07/24.
doi: 10.1038/s41598-020-69142-4
pubmed: 32699319
pmcid: 7376243
Zhang, L., Cao, S., Li, J. & Wang, G. Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel. Foods. 11 (14), 2080. https://doi.org/10.3390/foods11142080 (2022). Epub 2022/07/28.
doi: 10.3390/foods11142080
pubmed: 35885324
pmcid: 9317450
Perez Escriva, P., Fuhrer, T., Sauer, U., Distinct, N. & Cross-Feeding, C. Networks in a Synthetic Mouse Gut Consortium. mSystems. 7 (2), e0148421. https://doi.org/10.1128/msystems.01484-21 (2022). Epub 2022/04/01.
doi: 10.1128/msystems.01484-21
pubmed: 35357218
Shafiq, M. et al. Genomic diversity of resistant and virulent factors of Burkholderia pseudomallei clinical strains recovered from Guangdong using whole genome sequencing. Front. Microbiol. 13, 980525. https://doi.org/10.3389/fmicb.2022.980525 (2022). Epub 2022/11/18.
doi: 10.3389/fmicb.2022.980525
pubmed: 36386717
pmcid: 9649843
Hu, Y. et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. ;21(1):34. Epub 2022/02/05. doi: (2022). https://doi.org/10.1186/s12943-022-01522-y . Cited in: Pubmed; PMID 35114989.
Elgaali, H. et al. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria. J. Basic. Microbiol. ;42(6):373–380. (2002). Epub 2002/11/21. doi: https://doi.org/10.1002/1521-4028(200212)42:6%3C373::aid-jobm373%3E3.0.co;2-4 . Cited in: Pubmed; PMID 12442299.
Lee, C. J. et al. J. Agric. Food Chem. ;43(5):1348–1351. doi: https://doi.org/10.1021/jf00053a041 . (1995). Cited in: Pubmed; PMID WOS:A1995QY97800041.
doi: 10.1021/jf00053a041
Robacker, D. C. & Bartelt, R. J. Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. J. Chem. Ecol. 23 (12), 2897–2915. https://doi.org/10.1023/a:1022579414233 (1997). Cited in: Pubmed; PMID WOS:000071144800017.
doi: 10.1023/a:1022579414233
Zechman, J. M., Aldinger, S. & Labows, J. N. Jr. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J. Chromatogr. 377, 49–57. https://doi.org/10.1016/s0378-4347(00)80760-4 (1986). Epub 1986/04/25.
doi: 10.1016/s0378-4347(00)80760-4
pubmed: 3086354
Boots, A. W. et al. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J. Breath. Res. 8 (2), 027106. https://doi.org/10.1088/1752-7155/8/2/027106 (2014). Epub 2014/04/17.
doi: 10.1088/1752-7155/8/2/027106
pubmed: 24737039
Li, F. et al. GC-IMS facilitates identification of carbapenem-resistant Klebsiella pneumoniae in simulated blood cultures. AMB Express. 14 (1), 40. https://doi.org/10.1186/s13568-024-01708-1 (2024). Epub 2024/04/24.
doi: 10.1186/s13568-024-01708-1
pubmed: 38656563
pmcid: 11043319
Julak, J., Prochazkova-Francisci, E., Stranska, E. & Rosova, V. Evaluation of exudates by solid phase microextraction-gas chromatography. J. Microbiol. Methods. 52 (1), 115–122. https://doi.org/10.1016/s0167-7012(02)00148-3 (2003). Epub 2002/10/29.
doi: 10.1016/s0167-7012(02)00148-3
pubmed: 12401233
Julak, J., Stranska, E., Prochazkova-Francisci, E. & Rosova, V. Blood cultures evaluation by gas chromatography of volatile fatty acids. Med. Sci. Monit. 6 (3), 605–610 (2000 May-Jun). Epub 2001/02/24. Cited in: Pubmed; PMID 11208379.
Karami, N. et al. Identification of bacteria using volatile organic compounds. Cell. Mol. Biol. (Noisy-le-grand). 63 (2), 112–121. https://doi.org/10.14715/cmb/2017.63.2.18 (2017). Epub 2017/04/04.
doi: 10.14715/cmb/2017.63.2.18
pubmed: 28364792
Junger, M. et al. Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl. Microbiol. Biotechnol. 93 (6), 2603–2614. https://doi.org/10.1007/s00253-012-3924-4 (2012). Epub 2012/02/14.
doi: 10.1007/s00253-012-3924-4
pubmed: 22327321
pmcid: 3605498
Smart, A. et al. Sniffing out resistance - Rapid identification of urinary tract infection-causing bacteria and their antibiotic susceptibility using volatile metabolite profiles. J. Pharm. Biomed. Anal. 167, 59–65. https://doi.org/10.1016/j.jpba.2019.01.044 (2019). Epub 2019/02/12.
doi: 10.1016/j.jpba.2019.01.044
pubmed: 30743156
Chen, C., Wei, D., Shi, J., Wang, M. & Hao, J. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 98 (10), 4603–4613. https://doi.org/10.1007/s00253-014-5526-9 (2014). Epub 2014/02/19.
doi: 10.1007/s00253-014-5526-9
pubmed: 24535253
Zahniser, M. P. D. et al. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily. Protein Eng. Des. Sel. 30 (3), 271–278. https://doi.org/10.1093/protein/gzx015 (2017). Epub 2017/03/25.
doi: 10.1093/protein/gzx015
pubmed: 28338942
Bos, L. D., Sterk, P. J. & Schultz, M. J. Volatile metabolites of pathogens: a systematic review. PLoS Pathog. 9 (5), e1003311. https://doi.org/10.1371/journal.ppat.1003311 (2013). Epub 2013/05/16.
doi: 10.1371/journal.ppat.1003311
pubmed: 23675295
pmcid: 3649982
Pu, D., Zhao, J., Chang, K., Zhuo, X. & Cao, B. Superbugs with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci. Bull. (Beijing). 68 (21), 2658–2670. https://doi.org/10.1016/j.scib.2023.09.040 (2023). Epub 2023/10/12.
doi: 10.1016/j.scib.2023.09.040
pubmed: 37821268
Luterbach, C. L. et al. Multi-Drug Resistant Organism Network Investigators Network I, the Antibacterial Resistance Leadership G. Transmission of Carbapenem-Resistant Klebsiella pneumoniae in US Hospitals. Clin. Infect. Dis. 76 (2), 229–237. https://doi.org/10.1093/cid/ciac791 (2023). Epub 2022/09/30.
doi: 10.1093/cid/ciac791
pubmed: 36173830
Kempf, M. et al. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS One. 7 (2), e31676. https://doi.org/10.1371/journal.pone.0031676 (2012). Epub 2012/02/24.
doi: 10.1371/journal.pone.0031676
pubmed: 22359616
pmcid: 3280980
Knox, J. et al. Phenotypic detection of carbapenemase-producing Enterobacteriaceae by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Carba NP test. J. Clin. Microbiol. 52 (11), 4075–4077. https://doi.org/10.1128/JCM.02121-14 (2014). Epub 2014/09/05.
doi: 10.1128/JCM.02121-14
pubmed: 25187633
pmcid: 4313257
Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. U S A. 112 (27), E3574–3581. https://doi.org/10.1073/pnas.1501049112 (2015). Epub 2015/06/24.
doi: 10.1073/pnas.1501049112
pubmed: 26100894
pmcid: 4500264
Ahmed, W. M., Lawal, O., Nijsen, T. M., Goodacre, R. & Fowler, S. J. Exhaled Volatile Organic Compounds of Infection: A Systematic Review. ACS Infect. Dis. 3 (10), 695–710. https://doi.org/10.1021/acsinfecdis.7b00088 (2017). Epub 2017/09/06.
doi: 10.1021/acsinfecdis.7b00088
pubmed: 28870074
Foschi, C. et al. Impact of meropenem on Klebsiella pneumoniae metabolism. PLoS One. 13 (11), e0207478. https://doi.org/10.1371/journal.pone.0207478 (2018). Epub 2018/11/16.
doi: 10.1371/journal.pone.0207478
pubmed: 30440048
pmcid: 6237392
Rees, C. A. et al. Detection of high-risk carbapenem-resistant Klebsiella pneumoniae and Enterobacter cloacae isolates using volatile molecular profiles. Sci. Rep. 8 (1), 13297. https://doi.org/10.1038/s41598-018-31543-x (2018). Epub 2018/09/07.
doi: 10.1038/s41598-018-31543-x
pubmed: 30185884
pmcid: 6125577
Yip, A. Y. G. et al. Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites. Nat. Commun. 14 (1), 5094. https://doi.org/10.1038/s41467-023-40872-z (2023). Epub 2023/08/23.
doi: 10.1038/s41467-023-40872-z
pubmed: 37607936
pmcid: 10444851
Brennan-Krohn, T., Manetsch, R., O’Doherty, G. A. & Kirby, J. E. New strategies and structural considerations in development of therapeutics for carbapenem-resistant Enterobacteriaceae. Transl Res. 220, 14–32. https://doi.org/10.1016/j.trsl.2020.02.008 (2020). Epub 2020/03/24.
doi: 10.1016/j.trsl.2020.02.008
pubmed: 32201344
pmcid: 7293954
Shirley, M. & Ceftazidime-Avibactam A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs. ;78(6):675–692. Epub 2018/04/20. doi: (2018). https://doi.org/10.1007/s40265-018-0902-x . Cited in: Pubmed; PMID 29671219.
Ma, K., Feng, Y. & Zong, Z. Aztreonam-avibactam may not replace ceftazidime/avibactam: the case of KPC-21 carbapenemase and penicillin-binding protein 3 with four extra amino acids. Int. J. Antimicrob. Agents. 60 (3), 106642. https://doi.org/10.1016/j.ijantimicag.2022.106642 (2022). Epub 2022/07/26.
doi: 10.1016/j.ijantimicag.2022.106642
pubmed: 35872296