Potential of biochar to restoration of microbial biomass and enzymatic activity in a highly degraded semiarid soil.
Desertification
Microbial activity
Nutrient cycling
Pyrolysis
Soil health
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
13
06
2024
accepted:
22
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Biochar is an effective material for enhancing soil ecosystem services. However, the specific impacts of biochar on microbial indicators, particularly in degraded soils, remain poorly understood. This study aimed to evaluate the effects of biochar produced from cashew residues and sewage sludge, in a highly degraded soil, on microbial indicators. We analyzed soil chemical composition and microbial biomass C and N, enzyme activity, and stoichiometry. Cashew biochar increased soil respiration, indicating a higher availability of C to microorganisms compared to sewage sludge biochar and a better adaptation of soil microbial communities to C-rich organic material obtained from a native plant. Although the biochar differentially impacted microbial biomass C, both significantly increased N in the microbial biomass. Arylsulphatase activity did not respond to biochar application, while β-glucosidase, urease, and phosphatases showed significant changes with biochar treatments. Importantly, stoichiometry and vector analysis revealed that both types of biochar increased P limitation for soil microbes. Conversely, both biochar alleviated C and N limitations for the soil microbes. Thus, biochar applications in highly degraded soils should be supplemented with external P sources to maintain soil functions, mainly for cashew residues. Our results provide evidence that biochar can restore soil biological properties and enhance the availability of C and N to microorganisms. These findings have significant implications for restoration practices in degraded lands of semiarid regions.
Identifiants
pubmed: 39478100
doi: 10.1038/s41598-024-77368-9
pii: 10.1038/s41598-024-77368-9
doi:
Substances chimiques
Charcoal
16291-96-6
biochar
0
Soil
0
Carbon
7440-44-0
Nitrogen
N762921K75
Sewage
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26065Informations de copyright
© 2024. The Author(s).
Références
Kraamwinkel, C. T., Beaulieu, A., Dias, T. & Howison, R. A. Planetary limits to soil degradation. Commun. Earth Environ. 2, 249 (2021).
doi: 10.1038/s43247-021-00323-3
FAO. FAO Soils Portal - Key definitions. Food and Agricultural Organization of the United Nations (FAO). (2023).
AbdelRahman, M. A. E. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rend. Lincei Sci. Fis. Nat. 34, 767–808 (2023).
doi: 10.1007/s12210-023-01155-3
Lima, A. Y. V. et al. Grazing exclusion restores soil health in Brazilian drylands under desertification process. Appl. Soil. Ecol. 193, 105107 (2024).
doi: 10.1016/j.apsoil.2023.105107
Pereira, A. P. A. et al. Grazing exclusion regulates bacterial community in highly degraded semiarid soils from the Brazilian Caatinga biome. Land. Degrad. Dev. 32, 2210–2225 (2021).
doi: 10.1002/ldr.3893
Araujo, A. S. F., Medeiros, E. V., Costa, D. P., Pereira, A. P. A. & Mendes, L. W. From desertification to restoration in the Brazilian semiarid region: unveiling the potential of land restoration on soil microbial properties. J. Environ. Manag. 351, 119746 (2024).
doi: 10.1016/j.jenvman.2023.119746
Araújo, A. S. F. et al. Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil. Biol. Biochem. 66, 175–181 (2013).
doi: 10.1016/j.soilbio.2013.07.013
Pereira, A. P. A. et al. Land degradation affects the microbial communities in the Brazilian Caatinga biome. Catena (Amst) 211, 105961 (2022).
doi: 10.1016/j.catena.2021.105961
Silva, D. F. et al. Enzymatic stoichiometry in degraded soils after two decades of restoration in a Brazilian semiarid region. Catena (Amst) 236, 107768 (2024).
doi: 10.1016/j.catena.2023.107768
Silva, I. C. B. et al. Biochar from different residues on soil properties and common bean production. Sci. Agric. 74, 378–382 (2017).
doi: 10.1590/1678-992x-2016-0242
Nascimento, Í. V. et al. Biochar as a carbonaceous material to enhance soil quality in drylands ecosystems: a review. Environ. Res. 233, 116489 (2023).
pubmed: 37385417
doi: 10.1016/j.envres.2023.116489
Gross, A., Bromm, T. & Glaser, B. Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy 11, 2474 (2021).
doi: 10.3390/agronomy11122474
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).
pubmed: 20975722
doi: 10.1038/ncomms1053
Wang, D., Fonte, S. J., Parikh, S. J., Six, J. & Scow, K. M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303, 110–117 (2017).
pubmed: 29109589
pmcid: 5669273
doi: 10.1016/j.geoderma.2017.05.027
Esmaeilizad, A., Shokri, R., Davatgar, N. & Dolatabad, H. K. Exploring the driving forces and digital mapping of soil biological properties in semi-arid regions. Comput. Electron. Agric. 220, 108831 (2024).
doi: 10.1016/j.compag.2024.108831
Bhaduri, D. et al. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 13, (2022).
Dwivedi, V. & Soni, P. A review on the role of soil microbial biomass in eco-restoration of degraded ecosystem with special reference to mining areas. J. Appl. Nat. Sci. 3, 151–158 (2011).
Luo, L., Meng, H. & Gu, J. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manag. 197, 539–549 (2017).
doi: 10.1016/j.jenvman.2017.04.023
Zhang, W. et al. Extracellular enzyme stoichiometry reveals carbon and nitrogen limitations closely linked to bacterial communities in China’s largest saline lake. Front. Microbiol. 13, (2022).
Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil. Ecol. 152, 103570 (2020).
doi: 10.1016/j.apsoil.2020.103570
Martins Filho, A. P. et al. Impact of coffee biochar on carbon, microbial biomass and enzyme activities of a sandy soil cultivated with bean. Acad. Bras. Cienc. 93, (2021).
Zhao, K. et al. Potential implications of biochar and compost on the stoichiometry-based assessments of soil enzyme activity in heavy metal-polluted soils. Carbon Res. 1, 29 (2022).
doi: 10.1007/s44246-022-00029-x
Feketeová, Z., Hrabovský, A. & Šimkovic, I. Microbial features indicating the recovery of Soil Ecosystem strongly affected by Mining and Ore Processing. Int. J. Environ. Res. Public. Health 18, 3240 (2021).
pubmed: 33801006
pmcid: 8003828
doi: 10.3390/ijerph18063240
Jones, D. L. et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil. Biol. Biochem. 43, 1723–1731 (2011).
doi: 10.1016/j.soilbio.2011.04.018
Han, Z. et al. Divergent effects of biochar amendment and replacing mineral fertilizer with manure on soil respiration in a subtropical tea plantation. Biochar 5, 73 (2023).
doi: 10.1007/s42773-023-00273-3
Van Peteghem, L., Sakarika, M., Matassa, S. & Rabaey, K. The role of microorganisms and carbon-to-nitrogen ratios for microbial protein production from bioethanol. Appl. Environ. Microbiol. 88, (2022).
Petter, F. A. et al. Microbial biomass and organic matter in an oxisol under application of biochar. Bragantia 78, 109–118 (2019).
doi: 10.1590/1678-4499.2018237
Wang, X. et al. Fungi to bacteria ratio: historical misinterpretations and potential implications. Acta Oecol. 95, 1–11 (2019).
doi: 10.1016/j.actao.2018.10.003
Yuan, M. et al. The addition of biochar and nitrogen alters the microbial community and their cooccurrence network by affecting soil properties. Chemosphere 312, 137101 (2023).
pubmed: 36334753
doi: 10.1016/j.chemosphere.2022.137101
Xiang, Y. et al. Biochar addition increased soil bacterial diversity and richness: Large-scale evidence of field experiments. Sci. Total Environ. 893, 164961 (2023).
pubmed: 37336405
doi: 10.1016/j.scitotenv.2023.164961
Carlson, J. et al. Application of organic amendments to restore degraded soil: effects on soil microbial properties. Environ. Monit. Assess. 187, 109 (2015).
pubmed: 25673270
doi: 10.1007/s10661-015-4293-0
Paz-Ferreiro, J., Gascó, G., Gutiérrez, B. & Méndez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils. 48, 511–517 (2012).
doi: 10.1007/s00374-011-0644-3
Bandick, A. K. & Dick, R. P. Field management effects on soil enzyme activities. Soil. Biol. Biochem. 31, 1471–1479 (1999).
doi: 10.1016/S0038-0717(99)00051-6
Wei, L. et al. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil. Biol. Biochem. 135, 134–143 (2019).
doi: 10.1016/j.soilbio.2019.04.016
Foster, E. J., Fogle, E. J. & Cotrufo, M. F. Sorption to biochar impacts β-glucosidase and phosphatase enzyme activities. Agriculture (Switzerland) 8, (2018).
Lehmann, J. et al. Biochar effects on soil biota –a review. Soil. Biol. Biochem. 43, 1812–1836 (2011).
doi: 10.1016/j.soilbio.2011.04.022
Liao, N. et al. Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur. J. Soil. Biol. 72, 27–34 (2016).
doi: 10.1016/j.ejsobi.2015.12.008
Ghorbani, M. et al. Feasibility of biochar derived from sewage sludge to promote sustainable agriculture and mitigate GHG emissions—A review. International Journal of Environmental Research and Public Health vol. 19 Preprint at (2022). https://doi.org/10.3390/ijerph191912983
Kandziora-Ciupa, M., Nadgórska-Socha, A. & Barczyk, G. The influence of heavy metals on biological soil quality assessments in the Vaccinium myrtillus L. Rhizosphere under different field conditions. Ecotoxicology 30, 292–310 (2021).
pubmed: 33496898
pmcid: 7902592
doi: 10.1007/s10646-021-02345-1
Feng, J. et al. Trade-offs in carbon-degrading enzyme activities limit long-term soil carbon sequestration with biochar addition. Biol. Rev. 98, 1184–1199 (2023).
pubmed: 36914985
doi: 10.1111/brv.12949
Mitchell, P. J., Simpson, A. J., Soong, R. & Simpson, M. J. Biochar amendment altered the molecular-level composition of native soil organic matter in a temperate forest soil. Environ. Chem. 13, 854–866 (2016).
doi: 10.1071/EN16001
Jin, Y. et al. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 142, 128–135 (2016).
pubmed: 26212669
doi: 10.1016/j.chemosphere.2015.07.015
Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).
pubmed: 24739236
doi: 10.1038/ncomms4694
Arenberg, M. R. & Arai, Y. Nitrogen species specific phosphorus mineralization in temperate floodplain soils. Sci. Rep. 11, 17430 (2021).
pubmed: 34465812
pmcid: 8408222
doi: 10.1038/s41598-021-96885-5
Li, J. et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma 404, 115376 (2021).
doi: 10.1016/j.geoderma.2021.115376
Tang, C. et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review. Environ. Earth Sci. 79, 94 (2020).
doi: 10.1007/s12665-020-8840-9
Lopes, É. M. G. et al. Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane. Environ. Technol. Innov. 21, 101270 (2021).
doi: 10.1016/j.eti.2020.101270
Zhang, M. et al. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. Res. 24, 10108–10120 (2017).
doi: 10.1007/s11356-017-8505-8
Moorhead, D. L., Sinsabaugh, R. L., Hill, B. H. & Weintraub, M. N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil. Biol. Biochem. 93, 1–7 (2016).
doi: 10.1016/j.soilbio.2015.10.019
Zhou, J. et al. Organic carbon accumulation and microbial activities in arable soils after abandonment: A chronosequence study. Geoderma 435, 116496 (2023).
doi: 10.1016/j.geoderma.2023.116496
Kunito, T. et al. Ecoenzymatic stoichiometry as a temporally integrated indicator of nutrient availability in soils. Soil. Sci. Plant. Nutr. 70, 246–269 (2024).
doi: 10.1080/00380768.2024.2341669
Pavinato, P. S. et al. Map of total phosphorus content in native soils of Brazil. Sci. Agric. 78, 1–5 (2020).
IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (Vienna, 2022).
Koppen, W. Klassifikation Der Klimate Nach Temperatur, Niederschlag Und Jahreslauf. Petermanns Geogr. Mitt 64, 193–248 (1918).
IPECE. Perfil Municipal. Irauçuba-CE. Instituto de Pesquisas e Estratégia Econômica do Ceará 188. (2017).
Manual de Métodos De Análise De Solo. (Embrapa, Distrito Federal, 2017).
Enders, A. & Lehmann, J. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun. Soil. Sci. Plant. Anal. 43, 1042–1052 (2012).
doi: 10.1080/00103624.2012.656167
Mendonça, E. S. & Matos, E. S. Matéria Orgânica Do Solo: Métodos De Análises (UFV-Gefert, 2017).
Novotny, E. H., Maia, C. M. B., de Carvalho, F., Madari, B. E. & M. T. de M. & Biochar: Carbono pirogênico para uso agrícola - Uma revisão crítica. Rev. Bras. Cienc. Solo. 39, 321–344 (2015).
doi: 10.1590/01000683rbcs20140818
Fernandes. V. L. B. et al. Recomendações de Adubação e Calagem Para o Estado Do Ceará. (Universidade Federal do Ceará, Fortaleza, (1993).
Yeomans, J. C. & Bremner, J. M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil. Sci. Plant. Anal. 19, 1467–1476 (1988).
doi: 10.1080/00103628809368027
Manual de métodos de análise de solo. - Portal Embrapa. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo
Anderson, T. & Domsch, K. H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil. Biol. Biochem. 21, 471–479 (1989).
doi: 10.1016/0038-0717(89)90117-X
Vance, E. D., Brookes, P. C. & Jenkinson, D. An extraction method for measuring soil microbial biomass C. Soil. Biol. Biochem. 19, 703–707 (1987).
doi: 10.1016/0038-0717(87)90052-6
Sparling, G. P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil. Res. 30, 195 (1992).
doi: 10.1071/SR9920195
Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil. Biol. Biochem. 17, 837–842 (1985).
doi: 10.1016/0038-0717(85)90144-0
Eivazi, F. & Tabatabai, M. A. Glucosidases and galactosidases in soils. Soil. Biol. Biochem. 20, 601–606 (1988).
doi: 10.1016/0038-0717(88)90141-1
Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophe- nyl phosphate for assay of soil phosphatase activity. Soil. Biol. Biochem. 1, 301–307 (1969).
doi: 10.1016/0038-0717(69)90012-1
Tabatabai, M. A. & Bremner, J. M. Arylsulfatase activity of soils. Soil Sci. Soc. Am. J. 34, 225–229 (1970).
doi: 10.2136/sssaj1970.03615995003400020016x
Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, (1988).
Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113 (2014).
doi: 10.1007/s10533-013-9849-x
Moorhead, D. L., Rinkes, Z. L., Sinsabaugh, R. L. & Weintraub, M. N. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Front. Microbiol. 4, (2013).